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Introduction
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AN EXPERIMENTAL CONUNDRUM
k

p

H

p−k

Theoretical descriptions of soft photon emission spectra typically rely on a
formula based on the Leading Power (LP) eikonal approximation, where the
photon momentum k→ 0:

dσLP

d3k
=

α

(2π)2

1
ωk

∫
d3p3 · · ·

∫
d3pn

 n∑
i,j=1

−ηiηj
pi · pj

(pi · k)(pj · k)

 dσH(p1, . . . , pn)

Eikonal factor is
I universal
I insensitive to spin of the hard emitter
I insensitive to recoil of the hard emitter
I in agreement with classical power spectrum

dσ
dωk
∼ 1

ωk
=⇒ I(ωk) = dσ

dωk
~ωk ∼ const.
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AN EXPERIMENTAL CONUNDRUM

Tension between data and predicted LP bremsstrahlung spectrum:

[Table taken from Cheuk-Yin Wong, arXiv:1404.0040. See also Martha Spyropoulus-Stassinaki, CF

2002, V. Perepelitsa, for the DELPHI Collaboration, Nonlin. Phenom. Complex Syst. 12, 343 (2009) ]
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AN EXPERIMENTAL CONUNDRUM

DELPHI data for hadronic Z decays

Photon range: 200 MeV < ωk < 1 GeV, pt (w.r.t. jet) < 80 MeV

[Abdallah et al. Eur. Phys. J. C (2010) 67: 343–366]
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FUTURE MEASUREMENTS AT LHC

Planned upgrade of the ALICE detector

[Credits: D. Adamová et al., “A next-generation LHC heavy-ion experiment,” 1902.01211.]

I possibility to measure ultra soft photons at very low transverse mo-
mentum
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How can we improve the theoretical
predictions?
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How can we improve the theoretical
predictions?

A possibility within the realm of perturbation
theory and parton model: go beyond the soft

approximation k → 0 at Next-to-Leading Power

Disclaimer: every time I will mention a hadron I have in mind a massless
particle (a quark or a gluon). The corresponding partonic cross section

(which contain collinear divergences) must be convoluted with the
non-perturbative PDFs/FFs

σ =

∫
φ1 φ2 σ̂ + non pert. corr.
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NLP: AN INTERDISCIPLINARY AREA

NLP in k as perturbation theory in G/b
(corrections to Newton)

[Image credits: CMS (cds.cern.ch/record/1406073), Antonelli, Kavanagh, Khalil, Steinhoff, Vines

PRL 125, 011103, Strominger arXiv:1703.05448]



11/35

A WORLDLINE APPROACH: THE GWL

I Wilson Line on a straight trajectory is well-known:

QCD: Wp(0,∞) = exp

{
ig
∫ ∞

0
dt pµ Aµ(pt)

}
= e

ig
∫ ddk

(2π)d
pµ
p·k Ãµ(k)

grav: Wp(0,∞) = exp

{
−iκ

2

∫ ∞
0

dt pµpν hµν(pt)

}
= e

−κ
2

∫ ddk
(2π)d

pµpν
p·k h̃µν(k)

WL generates an infinite number of soft emissions along direction pµ

(soft resummation)

I Generalized Wilson Line W̃p(0,∞) [Laenen, Stavenga, White 2008, White 2011,

DB 2020]: generalize this procedure to subleading powers in k (i.e. include
fluctuations and correlations) .
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A WORLDLINE APPROACH: THE GWL

[Luna,Melville,Naculich,White 2017, DB, Kulesza, Pirsch 2021]

I classical terms: deflection angle θ from the eikonal phase χNE

eiχNE = 〈0|W̃cl
p1 (0,−∞,∞)W̃cl

p2 (z,−∞,∞)|0〉 , θ ∼ ∂χNE

∂z

I inclusion of quantum terms: Reggeization
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SOFT GLUON RESUMMATION AT NLP
Goal is to extend traditional threshold resummation (ξ → 0) at NLP
[Abbas, DB, Damsté, Laenen, Magnea, Vernazza, vanBeekveld, White, Beneke, Broggio, Garny,

Jaskiewicz, Szafron, Wang, Moult, Stewart, Tackmann, Vita, Zhu, Liu, Neubert,... 2015-2022]

dσ
dξ

=

∞∑
n=0

2n−1∑
m=0

(
c(−1)

nm

(
logm ξ

ξ

)
+︸ ︷︷ ︸

LP (LL,NLL,NNLL,...)

+ c(0)
nm logm ξ︸ ︷︷ ︸

NLP (LL,NLL,NNLL,...)

+ . . .

)

[Image credits: (left) Bonvini, Marzani, Muselli, Rottoli, 1603.08000, (right) van Beekveld, Laenen,

Sinninghe Damsté, Vernazza 2101.07270]
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In the light of this recent progress in NLP
techniques in different areas of physics, it is

natural to ask:

can we apply these techniques to the photon
bremsstrahlung? How?
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Review of Low-Burnett-Kroll theorem at NLP
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LBK THEOREM (LP)
Consider the Feynman diagram for a photon emitted from an initial state
fermion of charge Q. The interactions of the fermion with the other hard
particles can be collected into the sub-diagramH.

k
p

H

p−k

Aµ = H(p− k)
(/p−/k)

(p−k)2 (Q γµ) u(p)

Then take the leading term for k→ 0 (eikonal approximation):

H(p− k) = H(p) +O(k0) , (p− k)2 = −2p · k +O(k0) , (1)

/pγ
µ u(p) = (2pµ − γµ/p) u(p) = 2pµ u(p) (Dirac eq.) . (2)

Then the radiative amplitude Aµ becomes proportional to the non-radiative
amplitude A:

Aµ =
(
−Q pµ

p·k

)
ū(p)H(p)︸ ︷︷ ︸

A

+ O(k0) = X H
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LBK THEOREM (LP)

Summing over the n charged external legs of the amplitude An (inserting a
factor η = ±1 for incoming-outgoing particles), we get the leading soft
theorem:

ε∗µ(k)Aµ = SLPAn , SLP =
n∑

i=1

Qiηi
ε∗(k) · pµi

pi · k
(3)

I The photon interacts only via the eikonal rule pµ

p·k : we lost information on
the spin of the external legs (i.e. the charged emitters)

I hard particles do not recoil, because photon momentum k→ 0
I soft factor has decoupled from the hard dynamics, thus is insensitive to

the short distance physics, i.e. soft photons cannot resolve details of the
non radiative amplitude An
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LBK THEOREM (NLP)

From NLP the photon starts to be sensitive the hard dynamics, hence we
allow the possibility that it is emitted from a virtual particle inside the
subdiagramH.

Therefore, we classify the diagrams in external emissions (already present at
LP)

k
p

H

p−k

and internal emissions:
k

p

H
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LBK THEOREM (NLP)

k
p

H

p−k

k
p

H

I External emission: expand up to O(k)

Aµext(p) = H(p− k)
(/p− /k)

(p− k)2 (Q γµ)u(p) (4)

= QH(p)

(
pµ

p · k +
kµ

2p · k −
k2pµ

2(p · k)2 −
ikνσµν

p · k

)
u(p)

+ Q
pµ

p · k kν
∂H(p− k)

∂kν

∣∣∣
k=0︸ ︷︷ ︸

− ∂H(p)
∂pν

u(p) + O(k)

Here we used γµγν = gµν − iσµν where σµν = i
4 [γµ, γν ] is the Lorentz

generator for particles of spin 1
2 . Then sum over all external legs

Aµext =
∑

iA
µ
ext(pi)
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LBK THEOREM (NLP)

I Internal emission: use Ward identity kµ(Aµext +Aµint) = 0

Aµint =
∑

i

Qi
∂H(pi)

∂pi
µ

u(pi) (5)

I Adding Aµext and Aµint:

Aµ =
∑

i

Qi
pµi

pi · k
A(p1...pn)

+
∑

i

Qi

(
kµ

2p · k −
k2pµ

2(p · k)2 −
ikνσµν

p · k

)
A(p1...pn)

+
∑

i

Qi

(
−

pµi kν

pi · k
∂

∂pνi
+

∂

∂pµi

)
︸ ︷︷ ︸
− kν

pi·k

(
pµi

∂

∂pνi
− pνi

∂

∂pµi

)
︸ ︷︷ ︸

≡Lµν

A(p1...pn) (6)

Lµν is the angular momentum generator of the Lorentz group
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LBK THEOREM (NLP)

This is the sub-leading soft theorem, known as Low-Burnett-Kroll theorem:
[Low 1958 (scalar emitters), Burnett-Kroll 1968 (spin 1

2 emitters, conjecture for generic
spin), Bell-VanRoyen 1969 (generic spin)]
For a real photon (k2 = 0, ε(k) · k = 0) it has the more compact form

ε∗µ(k)Aµ = (SLP + SNLP−tree)An , (7)

SLP =
n∑

i=1

Qi
ε∗(k) · pi

pi · k
, SNLP−tree =

n∑
i=1

Qi
ε∗µ(k)kν(σµν + Lµν)

pi · k
(8)

I corrections to the strict limit k→ 0: small recoil of the emitter taken into
account

I sensitive to the spin of the emitter (e.g. σµν = 0 for scalars,
σµν = i

2 [γµ, γν ]for spin 1/2, etc.)
I orbital angular momentum Lµν is sensitive to the short distance

interactions in A (hard lines do not start from a pointlike vertex)
I NLP corrections here are valid only at the tree-level
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NLP (tree-level) with shifted kinematics
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NLP BREMSSTRAHLUNG WITH SHIFTED KINEMATICS

Squaring amplitude and summing over polarizations∑
pol

|A(p1, . . . , pn, k)|2 =
∑

ij

(−ηiηj)
pi · pj

pi · k pj · k
|A(p1, . . . , pn)|2 → LP

+
∑

ij

(−ηiηj)
pi
µ

pi · k
Gµνj

∂

∂pνj
|A(p1, . . . , pn)|2 → NLP

where

Gµνi = gµν − (2pi − k)µkν

2pi · k
= gµν −

pµi kν

pi · k
+O(k)

Some drawbacks:
I How to efficiently implement NLP corrections in cross-sections?
I Derivatives might give instabilities in numerical implementations
I Violation of momentum conservation in non-radiative amplitude
I Similar interest in QCD-resummation program (→ need for alternative

analytic forms of LBK theorem)

→ rewrite NLP contribution in terms of shifted kinematics



24/35

NLP BREMSSTRAHLUNG WITH SHIFTED KINEMATICS

LBK theorem becomes

|A(p1, . . . , pn, k)|2 =

(
n∑

i,j=1

−ηiηj
pi · pj

pi · k pj · k︸ ︷︷ ︸
LP factor!

)
|A(p1 + δp1, . . . , pn + δpn)|2

where shifts are of order O(k) and are defined as

δpµ` =

 n∑
i,j=1

ηiηj
pi · pj

pi · k pj · k

−1
n∑

m=1

(
ηmη`

(pm)νGµν`
pm · k

)

Note that

δpµ1 + · · ·+ δpµn = −kµ

δpi · pi = 0 δpi · k = − k2

2
= 0

hence momentum conservation is restored in the non-radiating amplitude.
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NLP BREMSSTRAHLUNG WITH SHIFTED KINEMATICS

Kinematical invariants sij = (pi + pj)
2 are shifted according to

sij → sij

(
1−

2(pi + pj) · k
sij

Rij

)

Rij =

 n∑
a,b=1

ηaηb
pa · pb

pa · k pb · k

−1(
ηi

(pi)µ
pi · k

+ ηj
(pj)µ

pj · k

) n∑
c=1

ηc
pµc

pc · k

e.g.

s = (p1 + p2)
2 → s (1− (1− z)R12)

where z = Q2/s. Q2 is the invariant mass of the charged final states.

1

2

3

N + 2

neutral particles

H
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NLP BREMSSTRAHLUNG WITH SHIFTED KINEMATICS

A simple case: n = 2 [DelDuca, Laenen, Mangea, Vernazza, White 2017]

|A(p1, p2, k)|2 =

(
n∑

i,j=2

−ηiηj
pi · pj

pi · k pj · k︸ ︷︷ ︸
LP factor!

)
|A(p1 + δp1, p2 + δp2)|2

δpµ1 = −1
2

(
p2 · k
p1 · p2

pµ1 −
p1 · k
p1 · p2

pµ2 + kµ
)

(9)

δpµ2 = −1
2

(
− p2 · k

p1 · p2
pµ1 +

p1 · k
p1 · p2

pµ2 + kµ
)

Also R12 = 1, thus

s→ s z = Q2
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NLP BREMSSTRAHLUNG WITH SHIFTED KINEMATICS

Shifted kinematics allows to efficiently implement LBK th. in the
bremsstrahlung cross-section

dσLP+(NLP-tree)

d3k
=

α

(2π)2

1
ωk

∫
d3p3 · · ·

∫
d3pn

 n∑
i,j=1

−ηiηj
pi · pj

(pi · k)(pj · k)


(1− (1− z)R12) dσH(p1 + δp1, ..., pn + δpn)

I (ωk)
0 ∼ 1 correction to LP soft photon bremsstrahlung (∼ 1

ωk
)

I NLP shifts take into account spin and recoil of the hard emitter
I for which value of ωk and pt can we test NLP-tree level effects?
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NLP with QCD loop corrections



29/35

NLP BREMSSTRAHLUNG WITH QCD CORRECTIONS

I at LP, soft theorems do not receive loop corrections.

ε∗µ(k)Aµ = SLP An , An = A(0)
n ,A(1)

n ,A(2)
n , ...

SLP =

n∑
i=1

Qi
ε∗(k) · pi

pi · k
,

I at NLP, soft theorems do receive loop corrections.[Bern,Davies,Nohle 2014,

He,Huang,Wen 2014, Larkoski,Neill, Stewart 2014, DB,Laenen,Magnea,Vernazza,White 2014]

ε∗µ(k)Aµ(0) = (SLP + SNLP−tree)A(0)
n ,

ε∗µ(k)Aµ(1) = (SLP + SNLP−tree)A(1)
n + ? ,

SLP =

n∑
i=1

Qi
ε∗(k) · pi

pi · k
, SNLP−tree =

n∑
i=1

Qi
ε∗µ(k)kν(σµν + Lµν)

pi · k

Various sources of correction. E.g. soft region in the massive case
[Engel,Signer,Ulrich 2021]. In the high energy limit, it is interesting to look at
the massless limit (crucial for the massless parton model) and the
collinear region
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NLP BREMSSTRAHLUNG WITH QCD CORRECTIONS

Virtual collinear effects are captured by radiative jet functions Jµ [DelDuca

1990, DB, Laenen, Magnea, Vernazza, White 2014, Gervais 2017, Beneke, Garny, Szafron, Wang

2018, Laenen, Damste, Vernazza, Waalewijn, Zoppi 2020, Liu, Neubert, Schnubel, Wang 2021].

HH

k

p

p

In particular, the one-loop quark radiative jet function in dimensional
regularization (with d = 4− 2ε and µ̄ the MS scale) reads
[DB,Laenen,Magnea,Melville,Vernazza,White,2015]

Jµ(1)=

(
µ̄2

2p · k

)ε [(2
ε

+ 4 + 8ε
)(

n · k
p · k

pµ

p · n −
nµ

p · n

)
− (1 + 2ε)

ikαSαµ

p · k

+

(
1
ε
− 1

2
− 3ε

)
kµ

p · k + (1 + 3ε)
(
γµ/n
p · n −

pµ

p · k
/k/n

p · n

)]
+O(ε2, k)



31/35

NLP BREMSSTRAHLUNG WITH QCD CORRECTIONS

Thus, the next-to-soft theorem (i.e. LBK theorem) receives a logarithmic
correction:

ε∗µ(k)Aµ(0) = (SLP + SNLP−tree)A(0)
n ,

ε∗µ(k)Aµ(1) = (SLP + SNLP−tree)A(1)
n +

(∑
i

ε∗µ(k) qi Jµ(1)
i

)
A(0)

n ,

SLP =
n∑

i=1

Qi
ε∗(k) · pi

pi · k
, SNLP−tree =

n∑
i=1

Qi
ε∗µ(k)kν(σµν + Lµν)

pi · k(∑
i

ε∗µ(k) qi Jµ(1)
i

)
A(0)

n =
2

p1 · p2

[∑
ij

(
1
ε

+ log

(
µ̄2

2pi · k

))
qj pi · k

pj · ε
pj · k

]
A(0)

n

I Note that amplitude is IR divergent ε→ 0
I log(ωk) corrections to soft theorems in QED also discussed (mainly

classically) by Laddha-Sahoo-Sen. Here however more standard
approach (i.e. dim.reg.) to regularization of soft and collinear
divergences, which allows implementation in the massless limit
required in QCD partonic calculations.
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NLP BREMSSTRAHLUNG WITH QCD CORRECTIONS

IR divergences (1/ε) cancel by adding real emission diagram:

p

p
1

2

k

H

p

p
1

2

k

H

p

p
1

2

k

H

The soft photon emission from the loop with a collinear gluon is captured
by the radiative jet function Jµ (note here the mixed QED-QCD effect)
The corresponding contribution is what is needed for a process with a single
quark-antiquark pair in the massless limit such as
I e+e− → q q̄ γ
I p p→ µ+µ−γ

I ...

For processes with more than two colored particles situation more subtle (but
structure is similar)
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NLP BREMSSTRAHLUNG WITH QCD CORRECTIONS

The soft photon bremsstrahlung at O(αs) becomes

dσNLP

d3k
=

dσLP+(NLP-tree)

d3k
+
αs

4π
dσNLP-J

d3k
,

where

dσNLP-J

d3k
=

α

(2π)2

1
ωk

∫
d3p3 . . . d3pn

 2∑
i=1

ηi

8 log
(
µ̄2

2pi·k

)
pi · k

 dσH(p1, ..., pn)

I Correction of order αs log
(
µ̄2

2pi·k

)
to LP spectrum dσ

dωk

hence particularly enhanced for small ωk and small kt

I relevant only for hadrons (i.e. negligible for leptons - α� αs, m→ 0)
I Open issues: generic number of QCD-charged particles? More than

one-photon emission? How many detected photons in experimental
setup? Resummation?



34/35

CONDITIONS ON ωk FOR VALIDITY OF LBK/LOOP CORRECTIONS

TREE LEVEL (relevant scales: soft energy ωk and hard scale Q)

I when is LP valid? ωk � Q

I when is NLP-tree valid? ωk � Q

1-LOOP LEVEL (loops (i.e. virtual particles) generate new scales!)

I when is LP valid? ωk � Q

I when is NLP valid?

1. NLP-J (∼ log(Q/(pi · k))) for ωk � Q but also ωk > m (i.e. m→ 0 is safe).

2. NLP-S (∼ log(m/Q), log(m/(pi · k))) for ωk � Q but also ωk � m,Q

(fermion mass not negligible)

Need for a precise estimate of the cuts on photon energy/pt. This aspect
(which is process-dependent) can be resolved numerically (work in progress)
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CONCLUSIONS AND OUTLOOK

Demand for accurate theoretical predictions from experiments:

I Discrepancy th/exp in the soft photon bremsstrahlung ∼ 1
ωk

I Plans for precise measurements of ultrasoft photons at LHC

To this aim, tools available from recent progress in QCD resummation.

Correct LP formula with

I NLP-tree-level ∼ (ωk)
0 ∼ 1 with kinematical shifts (can we measure the

constant shift? at which soft energy/pt? access to spin of the emitter?)

I NLP-radiative jets ∼ logωk (enhanced for very small energies-high

rapidity. Relevant with final state hadrons? jet sub-structure?)

Generalizations, with open issues (check more QCD charged particles, many

photons (detected and undetected), resummation, numerics,...)
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