

# Soft photon bremsstrahlung at higher orders

**Domenico Bonocore** 

Institut für Theoretische Physik Universität Münster

Based on **Phys.Lett.B 833C(2022)137-325**, https://doi.org/10.1016/j.physletb.2022.137325

and ongoing work in collaboration with Anna Kulesza and Roger Balsach

EMMI Rapid Reaction Task Force "Real and virtual photon production at ultra-low transverse momentum and low mass at LHC"

GSI Darmstadt, 1-5 August 2022

## OUTLINE

Introduction

Review of Low's theorem at NLP

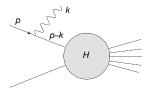
NLP with shifted kinematics

NLP with QCD loop corrections

# Introduction



#### AN EXPERIMENTAL CONUNDRUM



Theoretical descriptions of soft photon emission spectra typically rely on a formula based on the **Leading Power (LP)** eikonal approximation, where the photon momentum  $k \rightarrow 0$ :

$$\frac{d\sigma_{\rm LP}}{d^3k} = \frac{\alpha}{(2\pi)^2} \frac{1}{\omega_k} \int d^3p_3 \cdots \int d^3p_n \left( \sum_{i,j=1}^n -\eta_i \eta_j \frac{p_i \cdot p_j}{(p_i \cdot k)(p_j \cdot k)} \right) d\sigma_H(p_1, \dots, p_n)$$

Eikonal factor is

- universal
- ► insensitive to spin of the hard emitter
- insensitive to recoil of the hard emitter

• in agreement with classical power spectrum 
$$\frac{d\sigma}{d\omega_k} \sim \frac{1}{\omega_k} \implies I(\omega_k) = \frac{d\sigma}{d\omega_k} \hbar \omega_k \sim \text{const.}$$

### AN EXPERIMENTAL CONUNDRUM

#### Tension between data and predicted LP bremsstrahlung spectrum:

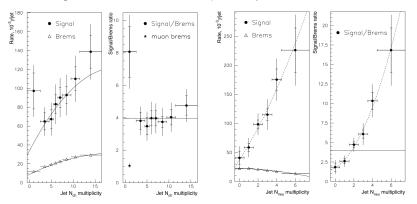
| Experiment                                              | Collision   | Photon $k_T$             | Photon/Brem   |
|---------------------------------------------------------|-------------|--------------------------|---------------|
|                                                         | Energy      |                          | Ratio         |
| <i>K</i> <sup>+</sup> <i>p</i> , CERN,WA27, BEBC (1984) | 70 GeV/c    | $k_T < 60 \text{ MeV/c}$ | 4.0 ±0.8      |
| <i>K</i> <sup>+</sup> <i>p</i> , CERN,NA22, EHS (1993)  | 250 GeV/c   | $k_T < 40 \text{ MeV/c}$ | $6.4 \pm 1.6$ |
| $\pi^+ p$ , CERN,NA22, EHS (1997)                       | 250 GeV/c   | $k_T < 40 \text{ MeV/c}$ | 6.9 ±1.3      |
| $\pi^- p$ , CERN, WA83, OMEGA (1997)                    | 280 GeV/c   | $k_T < 10 \text{ MeV/c}$ | 7.9 ±1.4      |
| $\pi^+ p$ , CERN, WA91, OMEGA (2002)                    | 280 GeV/c   | $k_T < 20 \text{ MeV/c}$ | 5.3 ±0.9      |
| <i>pp</i> , CERN, WA102, OMEGA (2002)                   | 450 GeV/c   | $k_T < 20 \text{ MeV/c}$ | $4.1 \pm 0.8$ |
| $e^+e^ \rightarrow$ hadrons, CERN, DELPHI               | ~91 GeV(CM) | $k_T < 60 \text{ MeV/c}$ | 4.0           |
| with hadron production (2010)                           |             |                          |               |
| $e^+e^- \rightarrow \mu^+\mu^-$ , CERN, DELPHI          | ~91 GeV(CM) | $k_T < 60 \text{ MeV/c}$ | 1.0           |
| with no hadron production (2008)                        |             |                          |               |

[Table taken from Cheuk-Yin Wong, arXiv:1404.0040. See also Martha Spyropoulus-Stassinaki, CF 2002, V. Perepelitsa, for the DELPHI Collaboration, Nonlin. Phenom. Complex Syst. 12, 343 (2009) ]

#### AN EXPERIMENTAL CONUNDRUM

#### DELPHI data for hadronic Z decays

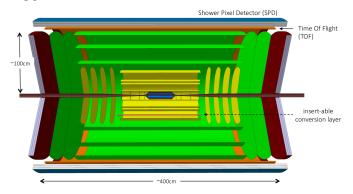
Photon range: 200 MeV <  $\omega_k$  < 1 GeV,  $p_t$  (w.r.t. jet) < 80 MeV



[Abdallah et al. Eur. Phys. J. C (2010) 67: 343-366]

### FUTURE MEASUREMENTS AT LHC

Planned upgrade of the ALICE detector



[Credits: D. Adamová et al., "A next-generation LHC heavy-ion experiment," 1902.01211.]

 possibility to measure ultra soft photons at very low transverse momentum How can we improve the theoretical predictions?

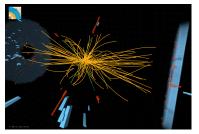
# How can we improve the theoretical predictions?

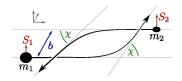
# A possibility within the realm of **perturbation theory** and parton model: go beyond the soft approximation $k \rightarrow 0$ at Next-to-Leading Power

Disclaimer: every time I will mention a hadron I have in mind a **massless particle** (a quark or a gluon). The corresponding partonic cross section (which contain collinear divergences) must be convoluted with the non-perturbative PDFs/FFs

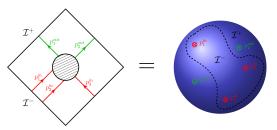
$$\sigma = \int \phi_1 \phi_2 \hat{\sigma} + \text{non pert. corr.}$$

## NLP: AN INTERDISCIPLINARY AREA





NLP in k as perturbation theory in G/b (corrections to Newton)



[Image credits: CMS (cds.cern.ch/record/1406073), Antonelli, Kavanagh, Khalil, Steinhoff, Vines PRL 125, 011103, Strominger arXiv:1703.05448]

#### A WORLDLINE APPROACH: THE GWL

• Wilson Line on a straight trajectory is well-known:

QCD: 
$$W_p(0,\infty) = \exp\left\{ig\int_0^\infty dt \, p^\mu A_\mu(pt)\right\} = e^{ig\int \frac{d^d k}{(2\pi)^d} \frac{p_\mu}{p \cdot k} \tilde{A}^\mu(k)}$$
  
grav:  $W_p(0,\infty) = \exp\left\{\frac{-i\kappa}{2}\int_0^\infty dt \, p_\mu p_\nu \, h^{\mu\nu}(pt)\right\} = e^{\frac{-\kappa}{2}\int \frac{d^d k}{(2\pi)^d} \frac{p_\mu p_\nu}{p \cdot k} \tilde{h}^{\mu\nu}(k)}$ 

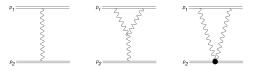
WL generates **an infinite number of soft emissions** along direction  $p^{\mu}$  (soft resummation)

► Generalized Wilson Line  $\widetilde{W}_p(0, \infty)$  [Laenen, Stavenga, White 2008, White 2011, DB 2020]: generalize this procedure to subleading powers in *k* (i.e. include fluctuations and correlations).

#### A WORLDLINE APPROACH: THE GWL

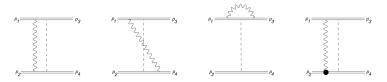
[Luna,Melville,Naculich,White 2017, DB, Kulesza, Pirsch 2021]

• **classical** terms: deflection angle  $\theta$  from the eikonal phase  $\chi_{\text{NE}}$ 



$$e^{i\chi_{
m NE}} = \langle 0|\widetilde{W}^{
m cl}_{p_1}(0,-\infty,\infty)\widetilde{W}^{
m cl}_{p_2}(z,-\infty,\infty)|0
angle \,, \qquad heta \sim rac{\partial\chi_{
m NE}}{\partial z}$$

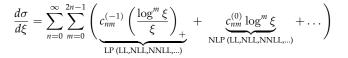
▶ inclusion of **quantum** terms: Reggeization

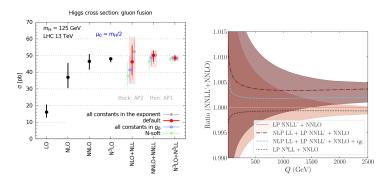


#### SOFT GLUON RESUMMATION AT NLP

Goal is to extend traditional threshold resummation ( $\xi \rightarrow 0$ ) at NLP

[Abbas, DB, Damsté, Laenen, Magnea, Vernazza, vanBeekveld, White, Beneke, Broggio, Garny, Jaskiewicz, Szafron, Wang, Moult, Stewart, Tackmann, Vita, Zhu, Liu, Neubert,... 2015-2022]





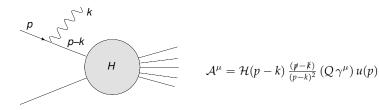
[Image credits: (left) Bonvini, Marzani, Muselli, Rottoli, 1603.08000, (right) van Beekveld, Laenen, Sinninghe Damsté, Vernazza 2101.07270] In the light of this recent progress in NLP techniques in different areas of physics, it is natural to ask:

can we apply these techniques to the photon bremsstrahlung? How?

# Review of Low-Burnett-Kroll theorem at NLP



Consider the **Feynman diagram** for a photon emitted from an initial state fermion of charge Q. The interactions of the fermion with the other hard particles can be collected into the sub-diagram H.



Then take the leading term for  $k \rightarrow 0$  (**eikonal** approximation):

$$\mathcal{H}(p-k) = \mathcal{H}(p) + \mathcal{O}(k^0) , \qquad (p-k)^2 = -2p \cdot k + \mathcal{O}(k^0) , \qquad (1)$$

$$p\gamma^{\mu} u(p) = (2p^{\mu} - \gamma^{\mu} p) u(p) = 2p^{\mu} u(p)$$
 (Dirac eq.) . (2)

>

Then the radiative amplitude  $\mathcal{A}^{\mu}$  becomes proportional to the non-radiative amplitude  $\mathcal{A}$ :

$$\mathcal{A}^{\mu} = \left(-Q \frac{p^{\mu}}{p \cdot k}\right) \underbrace{\overline{u}(p) \mathcal{H}(p)}_{\mathcal{A}} + \mathcal{O}(k^{0}) = \underbrace{}_{\mathcal{A}} X \qquad H$$

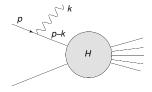
Summing over the *n* charged external legs of the amplitude  $A_n$  (inserting a factor  $\eta = \pm 1$  for incoming-outgoing particles), we get the **leading soft theorem**:

$$\epsilon^*_{\mu}(k)\mathcal{A}^{\mu} = \mathcal{S}_{LP}\mathcal{A}_n , \qquad \mathcal{S}_{LP} = \sum_{i=1}^n \mathcal{Q}_i \eta_i \frac{\epsilon^*(k) \cdot p_i^{\mu}}{p_i \cdot k}$$
(3)

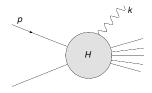
- ► The photon interacts only via the eikonal rule p<sup>µ</sup>/<sub>p·k</sub>: we lost information on the spin of the external legs (i.e. the charged emitters)
- ▶ hard particles do not recoil, because photon momentum  $k \rightarrow 0$
- ► soft factor has decoupled from the hard dynamics, thus is insensitive to the short distance physics, i.e. soft photons cannot resolve details of the non radiative amplitude A<sub>n</sub>

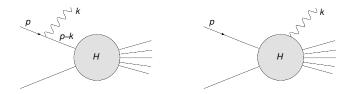
From NLP the photon starts to be sensitive the hard dynamics, hence we allow the possibility that it is emitted from a virtual particle inside the subdiagram  $\mathcal{H}$ .

Therefore, we classify the diagrams in **external emissions** (already present at LP)



and internal emissions:





• External emission: expand up to O(k)

$$\mathcal{A}_{\text{ext}}^{\mu}(p) = \mathcal{H}(p-k) \frac{(\not p - \not k)}{(p-k)^2} (Q \gamma^{\mu}) u(p) \tag{4}$$
$$= Q \mathcal{H}(p) \left( \frac{p^{\mu}}{p \cdot k} + \frac{k^{\mu}}{2p \cdot k} - \frac{k^2 p^{\mu}}{2(p \cdot k)^2} - \frac{ik_{\nu} \sigma^{\mu\nu}}{p \cdot k} \right) u(p)$$
$$+ Q \frac{p^{\mu}}{p \cdot k} k^{\nu} \underbrace{\frac{\partial \mathcal{H}(p-k)}{\partial k_{\nu}}}_{-\frac{\partial \mathcal{H}(p)}{\partial p_{\nu}}} u(p) + \mathcal{O}(k)$$

Here we used  $\gamma^{\mu}\gamma^{\nu} = g^{\mu\nu} - i\sigma^{\mu\nu}$  where  $\sigma^{\mu\nu} = \frac{i}{4}[\gamma^{\mu}, \gamma^{\nu}]$  is the Lorentz generator for particles of spin  $\frac{1}{2}$ . Then sum over all external legs  $\mathcal{A}_{\text{ext}}^{\mu} = \sum_{i} \mathcal{A}_{\text{ext}}^{\mu}(p_{i})$ 

• Internal emission: use Ward identity  $k_{\mu}(\mathcal{A}_{ext}^{\mu} + \mathcal{A}_{int}^{\mu}) = 0$ 

$$\mathcal{A}_{\rm int}^{\mu} = \sum_{i} Q_{i} \frac{\partial \mathcal{H}(p^{i})}{\partial p_{\mu}^{i}} u(p^{i})$$
<sup>(5)</sup>

• Adding  $\mathcal{A}_{ext}^{\mu}$  and  $\mathcal{A}_{int}^{\mu}$ :

$$\mathcal{A}^{\mu} = \sum_{i} Q_{i} \frac{p_{i}^{\mu}}{p_{i} \cdot k} \mathcal{A}(p_{1}...p_{n})$$

$$+ \sum_{i} Q_{i} \left( \frac{k^{\mu}}{2p \cdot k} - \frac{k^{2}p^{\mu}}{2(p \cdot k)^{2}} - \frac{ik_{\nu}\sigma^{\mu\nu}}{p \cdot k} \right) \mathcal{A}(p_{1}...p_{n})$$

$$+ \sum_{i} Q_{i} \underbrace{\left( -\frac{p_{i}^{\mu}k^{\nu}}{p_{i} \cdot k} \frac{\partial}{\partial p_{i}^{\nu}} + \frac{\partial}{\partial p_{i}^{\mu}} \right)}_{-\frac{k_{\nu}}{p_{i} \cdot k} \underbrace{\left( p_{i}^{\mu} \frac{\partial}{\partial p_{i}^{\nu}} - p_{i}^{\nu} \frac{\partial}{\partial p_{i}^{\mu}} \right)}_{\equiv L^{\mu\nu}} \mathcal{A}(p_{1}...p_{n})$$

$$(6)$$

 $L^{\mu\nu}$  is the angular momentum generator of the Lorentz group

This is the **sub-leading** soft theorem, known as **Low-Burnett-Kroll theorem**: [Low 1958 (scalar emitters), Burnett-Kroll 1968 (spin  $\frac{1}{2}$  emitters, conjecture for generic spin), Bell-VanRoyen 1969 (generic spin)] For a real photon ( $k^2 = 0$ ,  $\epsilon(k) \cdot k = 0$ ) it has the more compact form

$$\epsilon^*_{\mu}(k)\mathcal{A}^{\mu} = (\mathcal{S}_{LP} + \mathcal{S}_{NLP-tree})\mathcal{A}_n , \qquad (7)$$

$$S_{LP} = \sum_{i=1}^{n} Q_i \frac{\epsilon^*(k) \cdot p_i}{p_i \cdot k} , \quad S_{NLP-tree} = \sum_{i=1}^{n} Q_i \frac{\epsilon^*_{\mu}(k)k_{\nu}(\sigma^{\mu\nu} + L^{\mu\nu})}{p_i \cdot k}$$
(8)

- corrections to the strict limit  $k \rightarrow 0$ : small recoil of the emitter taken into account
- ► sensitive to the spin of the emitter (e.g.  $\sigma^{\mu\nu} = 0$  for scalars,  $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}]$  for spin 1/2, etc.)
- orbital angular momentum L<sup>μν</sup> is sensitive to the short distance interactions in A (hard lines do not start from a pointlike vertex)
- NLP corrections here are valid only at the tree-level

# NLP (tree-level) with shifted kinematics



Squaring amplitude and summing over polarizations

$$\sum_{\text{pol}} |\mathcal{A}(p_1, \dots, p_n, k)|^2 = \sum_{ij} (-\eta_i \eta_j) \frac{p_i \cdot p_j}{p_i \cdot k p_j \cdot k} |\mathcal{A}(p_1, \dots, p_n)|^2 \quad \to \mathbf{LP}$$
$$+ \sum_{ij} (-\eta_i \eta_j) \frac{p_i^{\mu}}{p_i \cdot k} G_j^{\mu\nu} \frac{\partial}{\partial p_j^{\nu}} |\mathcal{A}(p_1, \dots, p_n)|^2 \quad \to \mathbf{NLP}$$

where

$$G_i^{\mu\nu} = g^{\mu\nu} - \frac{(2p_i - k)^{\mu}k^{\nu}}{2p_i \cdot k} = g^{\mu\nu} - \frac{p_i^{\mu}k^{\nu}}{p_i \cdot k} + \mathcal{O}(k)$$

Some drawbacks:

- How to efficiently implement NLP corrections in cross-sections?
- Derivatives might give instabilities in numerical implementations
- ► Violation of momentum conservation in non-radiative amplitude
- ► Similar interest in QCD-resummation program (→ need for alternative analytic forms of LBK theorem)
- $\rightarrow$  rewrite NLP contribution in terms of shifted kinematics

LBK theorem becomes

$$|\mathcal{A}(p_1,\ldots,p_n,k)|^2 = \left(\sum_{i,j=1}^n \underbrace{-\eta_i \eta_j \frac{p_i \cdot p_j}{p_i \cdot k p_j \cdot k}}_{\text{LP factor!}}\right) |\mathcal{A}(p_1 + \delta p_1,\ldots,p_n + \delta p_n)|^2$$

where shifts are of order O(k) and are defined as

$$\delta p_{\ell}^{\mu} = \left(\sum_{i,j=1}^{n} \eta_i \eta_j \frac{p_i \cdot p_j}{p_i \cdot k p_j \cdot k}\right)^{-1} \sum_{m=1}^{n} \left(\eta_m \eta_\ell \frac{(p_m)_{\nu} G_{\ell}^{\mu\nu}}{p_m \cdot k}\right)$$

Note that

$$\delta p_1^{\mu} + \dots + \delta p_n^{\mu} = -k^{\mu}$$
$$\delta p_i \cdot p_i = 0 \qquad \qquad \delta p_i \cdot k = -\frac{k^2}{2} = 0$$

hence momentum conservation is restored in the non-radiating amplitude.

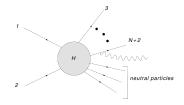
**Kinematical invariants**  $s_{ij} = (p_i + p_j)^2$  are shifted according to

$$s_{ij} \rightarrow s_{ij} \left( 1 - \frac{2(p_i + p_j) \cdot k}{s_{ij}} R_{ij} \right)$$
$$R_{ij} = \left( \sum_{a,b=1}^n \eta_a \eta_b \frac{p_a \cdot p_b}{p_a \cdot k p_b \cdot k} \right)^{-1} \left( \eta_i \frac{(p_i)_\mu}{p_i \cdot k} + \eta_j \frac{(p_j)_\mu}{p_j \cdot k} \right) \sum_{c=1}^n \eta_c \frac{p_c^\mu}{p_c \cdot k}$$

e.g.

$$s = (p_1 + p_2)^2 \rightarrow s (1 - (1 - z)R_{12})$$

where  $z = Q^2/s$ .  $Q^2$  is the invariant mass of the charged final states.



A simple case: n = 2 [DelDuca, Laenen, Mangea, Vernazza, White 2017]

$$|\mathcal{A}(p_{1}, p_{2}, k)|^{2} = \left(\sum_{i,j=2}^{n} \underbrace{-\eta_{i}\eta_{j} \frac{p_{i} \cdot p_{j}}{p_{i} \cdot k p_{j} \cdot k}}_{\text{LP factor!}}\right) |\mathcal{A}(p_{1} + \delta p_{1}, p_{2} + \delta p_{2})|^{2}$$

$$\delta p_{1}^{\mu} = -\frac{1}{2} \left(\frac{p_{2} \cdot k}{p_{1} \cdot p_{2}} p_{1}^{\mu} - \frac{p_{1} \cdot k}{p_{1} \cdot p_{2}} p_{2}^{\mu} + k^{\mu}\right)$$

$$\delta p_{2}^{\mu} = -\frac{1}{2} \left(-\frac{p_{2} \cdot k}{p_{1} \cdot p_{2}} p_{1}^{\mu} + \frac{p_{1} \cdot k}{p_{1} \cdot p_{2}} p_{2}^{\mu} + k^{\mu}\right)$$
(9)

Also  $R_{12} = 1$ , thus

$$s \to s \ z = Q^2$$

Shifted kinematics allows to efficiently implement LBK th. in the bremsstrahlung cross-section

$$\frac{d\sigma_{\text{LP+(NLP-tree)}}}{d^3k} = \frac{\alpha}{(2\pi)^2} \frac{1}{\omega_k} \int d^3p_3 \cdots \int d^3p_n \left(\sum_{i,j=1}^n -\eta_i \eta_j \frac{p_i \cdot p_j}{(p_i \cdot k)(p_j \cdot k)}\right)$$
$$(1 - (1 - z)R_{12}) \ d\sigma_H(p_1 + \delta p_1, ..., p_n + \delta p_n)$$

- $(\omega_k)^0 \sim 1$  correction to LP soft photon bremsstrahlung  $(\sim \frac{1}{\omega_k})$
- ► NLP shifts take into account spin and recoil of the hard emitter
- for which value of  $\omega_k$  and  $p_t$  can we test NLP-tree level effects?

# NLP with QCD loop corrections



• at LP, soft theorems **do not** receive **loop corrections**.

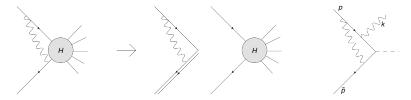
$$\begin{split} \epsilon^*_{\mu}(k)\mathcal{A}^{\mu} &= \mathcal{S}_{LP} \mathcal{A}_n , \qquad \mathcal{A}_n = \mathcal{A}_n^{(0)}, \mathcal{A}_n^{(1)}, \mathcal{A}_n^{(2)}, \dots \\ \mathcal{S}_{LP} &= \sum_{i=1}^n Q_i \frac{\epsilon^*(k) \cdot p_i}{p_i \cdot k} , \end{split}$$

at NLP, soft theorems do receive loop corrections.[Bern,Davies,Nohle 2014, He,Huang,Wen 2014, Larkoski,Neill, Stewart 2014, DB,Laenen,Magnea,Vernazza,White 2014]

$$\begin{split} \epsilon^{*}_{\mu}(k)\mathcal{A}^{\mu(0)} &= (\mathcal{S}_{LP} + \mathcal{S}_{NLP-tree})\mathcal{A}_{n}^{(0)} ,\\ \epsilon^{*}_{\mu}(k)\mathcal{A}^{\mu(1)} &= (\mathcal{S}_{LP} + \mathcal{S}_{NLP-tree})\mathcal{A}_{n}^{(1)} + ? ,\\ \mathcal{S}_{LP} &= \sum_{i=1}^{n} Q_{i} \frac{\epsilon^{*}(k) \cdot p_{i}}{p_{i} \cdot k} , \quad \mathcal{S}_{NLP-tree} = \sum_{i=1}^{n} Q_{i} \frac{\epsilon^{*}_{\mu}(k)k_{\nu}(\sigma^{\mu\nu} + L^{\mu\nu})}{p_{i} \cdot k} \end{split}$$

Various sources of correction. E.g. soft region in the massive case [Engel,Signer,Ulrich 2021]. In the high energy limit, it is interesting to look at the **massless limit** (crucial for the massless parton model) and the **collinear region** 

Virtual collinear effects are captured by radiative jet functions  $J^{\mu}$  [DelDuca 1990, DB, Laenen, Magnea, Vernazza, White 2014, Gervais 2017, Beneke, Garny, Szafron, Wang 2018, Laenen, Damste, Vernazza, Waalewijn, Zoppi 2020, Liu, Neubert, Schnubel, Wang 2021].



In particular, the one-loop quark radiative jet function in dimensional regularization (with  $d = 4 - 2\epsilon$  and  $\bar{\mu}$  the MS scale) reads

[DB,Laenen,Magnea,Melville,Vernazza,White,2015]

$$J^{\mu(1)} = \left(\frac{\bar{\mu}^2}{2p \cdot k}\right)^{\epsilon} \left[ \left(\frac{2}{\epsilon} + 4 + 8\epsilon\right) \left(\frac{n \cdot k}{p \cdot k} \frac{p^{\mu}}{p \cdot n} - \frac{n^{\mu}}{p \cdot n}\right) - (1 + 2\epsilon) \frac{ik_{\alpha} S^{\alpha \mu}}{p \cdot k} + \left(\frac{1}{\epsilon} - \frac{1}{2} - 3\epsilon\right) \frac{k^{\mu}}{p \cdot k} + (1 + 3\epsilon) \left(\frac{\gamma^{\mu} \#}{p \cdot n} - \frac{p^{\mu}}{p \cdot k} \frac{k}{p \cdot n}\right) \right] + \mathcal{O}(\epsilon^2, k)$$

Thus, the next-to-soft theorem (i.e. LBK theorem) receives a logarithmic correction:

$$\begin{split} \epsilon^{*}_{\mu}(k)\mathcal{A}^{\mu(0)} &= \left(\mathcal{S}_{LP} + \mathcal{S}_{NLP-tree}\right)\mathcal{A}_{n}^{(0)} ,\\ \epsilon^{*}_{\mu}(k)\mathcal{A}^{\mu(1)} &= \left(\mathcal{S}_{LP} + \mathcal{S}_{NLP-tree}\right)\mathcal{A}_{n}^{(1)} + \left(\sum_{i}\epsilon^{*}_{\mu}(k)q_{i}J_{i}^{\mu(1)}\right)\mathcal{A}_{n}^{(0)} ,\\ \mathcal{S}_{LP} &= \sum_{i=1}^{n}Q_{i}\frac{\epsilon^{*}(k)\cdot p_{i}}{p_{i}\cdot k} , \quad \mathcal{S}_{NLP-tree} = \sum_{i=1}^{n}Q_{i}\frac{\epsilon^{*}_{\mu}(k)k_{\nu}(\sigma^{\mu\nu} + L^{\mu\nu})}{p_{i}\cdot k} \\ \left(\sum_{i}\epsilon^{*}_{\mu}(k)q_{i}J_{i}^{\mu(1)}\right)\mathcal{A}_{n}^{(0)} &= \frac{2}{p_{1}\cdot p_{2}}\left[\sum_{ij}\left(\frac{1}{\epsilon} + \log\left(\frac{\bar{\mu}^{2}}{2p_{i}\cdot k}\right)\right)q_{j}p_{i}\cdot k\frac{p_{j}\cdot\epsilon}{p_{j}\cdot k}\right]\mathcal{A}_{n}^{(0)} \end{split}$$

• Note that amplitude is IR divergent  $\epsilon \to 0$ 

▶ log(ω<sub>k</sub>) corrections to soft theorems in QED also discussed (mainly classically) by Laddha-Sahoo-Sen. Here however more standard approach (i.e. dim.reg.) to regularization of soft and collinear divergences, which allows implementation in the massless limit required in QCD partonic calculations.

IR divergences (1/ $\epsilon$ ) cancel by adding real emission diagram:

The **soft photon** emission from the loop with a **collinear gluon** is captured by the radiative jet function  $J^{\mu}$  (note here the **mixed QED-QCD** effect) The corresponding contribution is what is needed for a process with a single quark-antiquark pair in the **massless limit** such as

$$\blacktriangleright \ e^+e^- \to q \,\bar{q} \,\gamma$$

$$\blacktriangleright p p \to \mu^+ \mu^- \gamma$$

▶ ...

For processes with more than two colored particles situation more subtle (but structure is similar)

The soft photon bremsstrahlung at  $\mathcal{O}(\alpha_s)$  becomes

$$rac{d\sigma_{
m NLP}}{d^3k} = rac{d\sigma_{
m LP+(NLP-tree)}}{d^3k} + rac{lpha_s}{4\pi} rac{d\sigma_{
m NLP-J}}{d^3k} \; ,$$

where

$$\frac{d\sigma_{\text{NLP-}J}}{d^3k} = \frac{\alpha}{(2\pi)^2} \frac{1}{\omega_k} \int d^3p_3 \dots d^3p_n \left(\sum_{i=1}^2 \eta_i \frac{8\log\left(\frac{\bar{\mu}^2}{2p_i \cdot k}\right)}{p_i \cdot k}\right) d\sigma_H(p_1, \dots, p_n)$$

► Correction of order 
$$\alpha_s \log \left(\frac{\bar{\mu}^2}{2p_i \cdot k}\right)$$
 to LP spectrum  $\frac{d\sigma}{d\omega_k}$ 

hence particularly enhanced for small  $\omega_k$  and small  $k_t$ 

- ▶ relevant only for hadrons (i.e. negligible for leptons  $\alpha \ll \alpha_s$ ,  $m \to 0$ )
- Open issues: generic number of QCD-charged particles? More than one-photon emission? How many detected photons in experimental setup? Resummation?

CONDITIONS ON  $\omega_k$  FOR VALIDITY OF LBK/LOOP CORRECTIONS

TREE LEVEL (relevant scales: soft energy  $\omega_k$  and hard scale *Q*)

• when is LP valid?  $\omega_k \ll Q$ 

• when is NLP-tree valid?  $\omega_k \ll Q$ 

1-LOOP LEVEL (loops (i.e. virtual particles) generate new scales!)

• when is LP valid?  $\omega_k \ll Q$ 

▶ when is NLP valid?

1. NLP-J (~  $\log(Q/(p_i \cdot k)))$  for  $\omega_k \ll Q$  but also  $\omega_k > m$  (i.e.  $m \to 0$  is safe).

2. NLP-S (~  $\log(m/Q)$ ,  $\log(m/(p_i \cdot k))$ ) for  $\omega_k \ll Q$  but also  $\omega_k \ll m, Q$ 

(fermion mass not negligible)

Need for a **precise** estimate of the cuts on photon energy/ $p_t$ . This aspect (which is process-dependent) can be resolved numerically (work in progress)

### CONCLUSIONS AND OUTLOOK

Demand for accurate theoretical predictions from experiments:

- Discrepancy th/exp in the soft photon bremsstrahlung  $\sim \frac{1}{\omega_k}$
- ▶ Plans for precise measurements of ultrasoft photons at LHC

To this aim, tools available from recent progress in QCD resummation. Correct LP formula with

- NLP-tree-level ~ (ω<sub>k</sub>)<sup>0</sup> ~ 1 with kinematical shifts (can we measure the constant shift? at which soft energy/p<sub>t</sub>? access to spin of the emitter?)
- NLP-radiative jets ~ log ω<sub>k</sub> (enhanced for very small energies-high rapidity. Relevant with final state hadrons? jet sub-structure?)
   Generalizations, with open issues (check more QCD charged particles, many photons (detected and undetected), resummation, numerics,...)