Active targets for R³B and proton radius measurement at CERN

Alexander Inglessi, PNPI Gatchina

Seminar on R³B related detector developments 20.10.2020 (online)

Outline

- Experiments at GSI
 - Light nuclei structure studies with IKAR
- Active targets for R³B
 - Prototype test
 - Exotic heavy ions: ACTAF1
 - Inelastic scattering: ACTAF2
- Proton charge radius measurement at CERN (PRM)
 - Motivation
 - Active target for PRM

Active targets

Active target: gas-filled detector in which gas is both the target and detection medium.

Highlights:

- Study of short-lived nuclei
- Recoil detection (p, α, etc.)
- Low momentum transfer
- Low detection threshold
- High efficiency

Unique experience of working with active targets at PNPI and GSI

- Material: stainless steel
- Gas: high purity H₂
- Anode diameter: 400 mm

anodes

cathodes

- Pressure: up to 10 bar
- Drift cells: 6×100 mm
- Beryllium windows
- Drift time: ~25 µs

grid

Not suitable for heavy ions

Bewindow

A. Inglessi | Seminar on R³B related detector developments

Method: elastic proton scattering at intermediate energies in inverse kinematics

Supporting equipment: scintillators, proportional chambers, magnet, drift chamber

High quality experimental results of high interest for nuclear- and astrophysics:

- Measurements of neutron rich nuclei ⁶He, ⁸He, ⁸Li, ⁹Li, ¹¹Li, ¹²Be, • ¹⁴Be and proton rich nuclei ⁷Be and ⁸B
- Measurements of the stable nuclei ⁴He and ⁶Li lacksquare
- Measurements of ¹²C, ¹⁴C, ¹⁵C, ¹⁶C, ¹⁷C (latest) ۲
- Elastic cross-sections and matter radii utilizing Glauber theory

²⁰⁸ Pb

A. Inglessi | Seminar on R³B related detector developments

ACTAF @R³B

ACtive TArget for FAIR

ACTAF @R³B

- Investigation of elastic scattering of heavier nuclei (e. g. ¹³²Sn) on protons at low momentum transfer in inverse kinematics
- Investigation of inelastic scattering of nuclei in inverse kinematics in coincidence with gamma

ACTAF @R³B

- Gas: H₂, D₂, ³He, ⁴He, CH₄, Ar
- Pressure: 0.5–20 bar
- Registration of all charged particles (p, d, t, ³He, ⁴He) in the active target with the energy of 0.5–50 MeV
- Energy resolution: 20–30 keV rms
- Efficiency of detection (T>0.5 MeV): ~100%
- Z_{vertex} resolution: ~0.5 mm rms
- Recoil angular resolution: ~0.5°
- Wall effects: less than 0.1%

Prototype test @GSI

• ¹²⁴Xe, 600 MeV/u beam

Can work with heavy beams!

A. Inglessi | Seminar on R³B related detector developments

Data acquisition and analysis

SIS3316 VME digitizers (FADCs)

- 16 channels per module
- 25 MHz (40 ns bin), up to 250 MHz
- 14 bit, 5 V (2 V) range
- Int./ext. trigger
- MAW energy/threshold

ACTAF1: large chamber to be placed upstream of GLAD magnet

- Material: stainless steel
- Pressure: up to 20 bar
- Anode diameter: 800 mm
- Drift cells: 2×220 mm
- Beryllium windows
- HV: 80 kV
- Volume: ~600 L

ACTAF2: small chamber to be located inside CALIFA gamma spectrometer

- Material: aluminum
- Pressure: up to 10 bar
- Anode diameter: 340 mm
- Drift cells: 1×216 mm
- Beryllium windows
- HV: 40 kV

- Pressure vessel produced and tested at PNPI
- Electronics is in production

Proton radius puzzle

High significance for nuclear & particle physics, including IKAR & ACTAF experiments

A. Vorobyev (PNPI) + A2 proposal: elastic ep scattering at MAMI Followup proposal with COMPASS: elastic µp scattering at CERN

Proton charge radius @CERN

Unique M2 beamline at the CERN SPS provides a high-intensity muon beam up to 200 GeV/c with a flux up to $10^7 \mu/s$

Measurement can be performed at the site of the current COMPASS experiment

Proton charge radius @CERN

Elastic µp-scattering at Q^2 = 0.001–0.04 GeV²/c²

Highlights:

- Low momentum transfer
- High extracted proton radius precision: below 1%
- Beam: ~100 GeV, 2×10⁶ μ/s
- Active target gas: H₂ @4 & 20 bar
- Recoil energy: 0.5-20 MeV
- Beam detectors: fibers (timing, trigger), silicons (projectile tracking)
- COMPASS spectrometer (muon momentum and background)
- Pilot run scheduled for 2021 with modified IKAR
- IKAR modifications suitable for experiments with heavy beams
- Main experiment scheduled for 2022

Active target for PRM

- Material: stainless steel
- Pressure: up to 20 bar
- Anode diameter: 600 mm
- Drift cells: 4×400 mm
- Beryllium windows
- HV: 100 kV

Design very similar to ACTAF1

- Vacuum parts, HV system, electronics and DAQ used for IKAR and prepared for ACTAF1/ACTAF2 can be an in-kind contribution (on a temporary basis) of GSI to the experiment
- After the run in 2022 2023 the setup (fully commissioned and tested) will be free for other experiments/applications

Summary

- Active target is a powerful tool for nuclear structure studies in both stable and exotic nuclei
- A series of experiments on light nuclei were performed at GSI with IKAR detector
- New active targets for R³B will allow measurement with the heavy beams, elastic and inelastic scattering
- High precision proton radius measurements at MAMI and CERN utilize similar techniques
- ACTAF program benefits from experience on new active target developments

Thank you!

Prototype test @CERN

