

PANDA collaboration meeting

June 27, 2020

Count Rate Estimates for the Measurement of Generalized Distribution Amplitudes with PANDA

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

Physics Motivation

 $par{p} o \gamma M$ at large Mandelstamm variables $\,s,-t,-u \gg \Lambda^2$

process amplitudes factorizes:

represent moments of baryon-antibaryon **G**eneralized **D**istribution **A**mplitudes (GDAs)

Theory Predictions

Theoretical work for baryon-antibaryon GDAs:

- ightharpoonup P. Kroll, A. Schäfer, The process p $\overline{p} \rightarrow \gamma \pi^0$ within the handbag approach, The European Physical Journal A 26, 89-98 (2005)
- P. Kroll, A. Schäfer, Probing moments of baryon-antibaryon generalized parton distributions at BELLE and FAIR, The European Physical Journal A 50, 1 (2014)

Absolute cross sections so far only available for:

$$p \ \overline{p} \rightarrow \gamma \ \gamma \qquad p \ \overline{p} \rightarrow \gamma \ \pi^0$$

Acceptance for $p \ \overline{p} \rightarrow \gamma \ \pi^0 \rightarrow \gamma \ \gamma \ \gamma$

→ For a first iteration, a constant acceptance of 45 % is assumed.

Cross sections for

$$p \ \overline{p} \rightarrow \gamma \ \pi^0$$

P. Kroll, A. Schäfer, The process p p \rightarrow y π^0 within the handbag approach, The European Physical Journal A 26, 89-98 (2005)

→ Process at small s measured with the E760 experiment at Fermilab

Acceptance for $p \ \overline{p} \rightarrow \gamma \ \pi^0 \rightarrow \gamma \ \gamma \ \gamma$

- L = 2 fb⁻¹ \rightarrow 1/2 year at the design luminosity
- Set the bin size to $\Delta \cos(\theta) = 0.2$

- → Measurement well possible in half a year, even with 10 x lower luminosity
- → Measurement is possible during phase 1 (L = 0.5 fb⁻¹)

$p \ \overline{p} \rightarrow \gamma \ \gamma$

→ For a first iteration, a constant acceptance of 60 % is assumed.

Cross sections for $p \ \overline{p} \rightarrow \gamma \ \gamma$

The process $\gamma\gamma\to B\overline{B}~$ measured at BELLE

lacktriangle Use symmetry relations to predict the cross sections of $p \ \overline{p}
ightarrow \gamma$

Cross section is two orders of magnitude lower than for

$$p \ \overline{p} \rightarrow \gamma \ \pi^0$$

- → Scale values down
- → Adjust acceptance

8

$p \ \overline{p} \rightarrow \gamma \ \gamma$

- L = 2 fb⁻¹ \rightarrow 1/2 year at the design luminosity
- Set bin size to $\Delta \cos(\theta) = 0.2$

- → Statistics of half a year at the design luminosity is required
- With a lower luminosity, the cos(θ) integrated cross section can be measured
 phase 1

Summary and Outlook

- → With an integrated luminosity of 2 fb⁻¹ both channels can be measured
- For π⁰γ even a more than 10 times lower integrated luminosity is sufficient to get first results → Study can be done during phase 1
- For $\gamma\gamma$ at least 2 fb⁻¹ are needed (phase 2), but the cos(θ) integrated cross section can be measured with lower integrated luminosities (phase 1)
- More detailed studies on the expected uncertainty of the cross section will be done, including the real acceptance, the effect of acceptance corrections, bin migration, ...
- For the introduced channels with other mesons, no absolute cross sections are available so far, only normalized ratio predictions