Upcoming Study of $\bar{p}p \to \bar{\Lambda}\Lambda$ with Extended Target

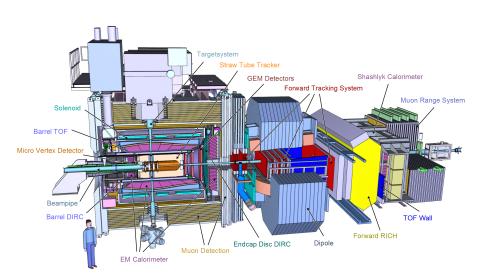
Adeel Akram

Uppsala University adeel.akram@physics.uu.se

PANDA Collaboration Meeting

(GSI Darmstadt, Germany)

October 28, 2020


Outline

- Motivation
- Procedure
- $\Lambda\bar{\Lambda}$ analysis (Preliminary)
- Future Tasks

Motivation

- Presence of residual gas in the beam pipe
 - ▶ Effectively larger target
 - ► Vacuum simulations performed by Alfons Khoukaz (CM 20/1).
- $\bar{p}p \to \Lambda \bar{\Lambda}$ analysis as benchmark
 - Well studied channel
 - ▶ Displaced Vertices, similar situation of extended target
 - ► Expertise at Uppsala
- $\bar{p}p \to \Lambda \bar{\Lambda}$ analysis for extended target.

PANDA Experiment

Analysis Framework

The analysis is performed using PandaRoot. Following versions are used:

- PandaRoot v-Oct19
 - ► Rho Analysis Package
- FairRoot v-18.2.0
- FairSoft v-Jun19

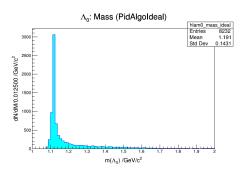
Possibly, a comparison can be drawn with newer (this) and older versions (Walter).

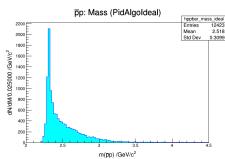
Reference Study

Study $\bar{p}p \to \Lambda \bar{\Lambda}$ analysis with

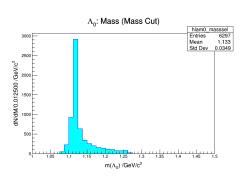
- \bullet 10,000 events at 1.642 GeV/c
- EvtGen as simulator engine
- Ideal Reco and Ideal PID algorithms
- Pre-selection and final selection criteria based on Walter's doctoral thesis (for comparison)

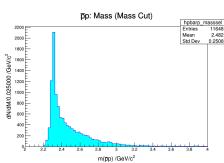
Replicate $\bar{p}p \to \Lambda \bar{\Lambda}$ analysis for

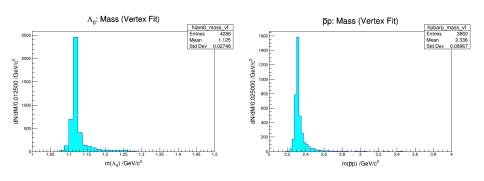

Extended Target

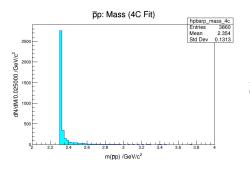

Pre-selection Criteria

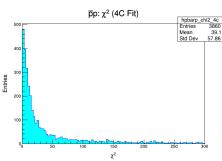
The following pre-selection is used:


- Events with at least four charged tracks
- All possible combinations of $p\pi^-$ and $p\pi^+$ are considered.
- Invariant mass of $p\pi$ fulfills $|m(\Lambda) m(p\pi)| < 0.3 \text{ GeV}/c^2$.
- Vertex fit on all $\Lambda, \bar{\Lambda}$ candidates. Reject those (skipped) w/ $P({\rm VF}) < 0.01$.
- For multiple $\Lambda/\bar{\Lambda}$ candidates, keep those w/ smallest χ^2 .
- $\Lambda, \bar{\Lambda}$ candidates are combined to reconstruct the $p\bar{p}$ system.
- A successful 4C-fit is required to reconstruct $\bar{p}p$.


Event Reconstruction: Ideal


Event Reconstruction: Mass Cut




```
RhoMassParticleSelector("lambda0", fMass0_lam, 0.3);
Reduction Factor: 1.3
```

Event Reconstruction: Vertex Fit

Event Reconstruction: 4C Fit

Pre-selection Efficiency

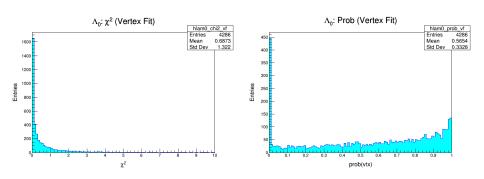
The reconstruction efficiency (ϵ) , using the pre-selection criteria, for Λ 's and $\bar{p}p$ are:

$$\epsilon(\Lambda) = 42.9\%$$

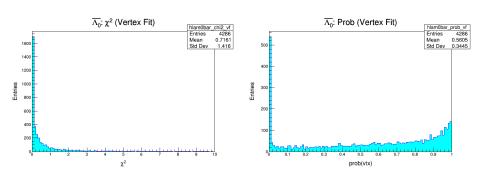
$$\epsilon(\bar{\Lambda}) = 42.9\%$$

$$\epsilon(\bar{p}p) = 38.6\%$$

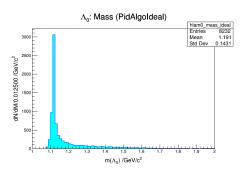
Efficiencies of Λ and $\bar{\Lambda}$ are same due to constraint on keeping one candidate per event.

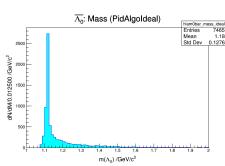

Future Tasks

- Increase the statistics
- Apply final selection criteria
- Apply acceptance correction
- Determine reconstruction efficiency and other observables
- Finally, $\bar{p}p \to \Lambda \bar{\Lambda}$ analysis for extended target (stay tuned).

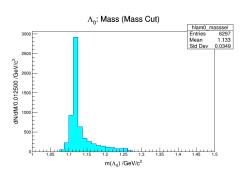

Questions?

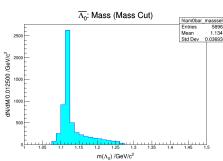
Backup Slides

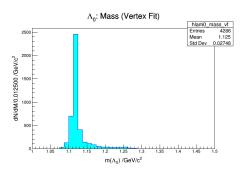

Event Reconstruction: Λ_0

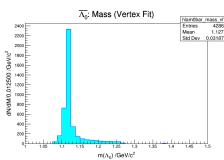


Event Reconstruction: $\bar{\Lambda}_0$




Event Reconstruction: Ideal


Event Reconstruction: Mass Cut




```
RhoMassParticleSelector("lambda0", fMass0_lam, 0.3);
Reduction Factor: 1.3
```

Event Reconstruction: Vertex Fit

