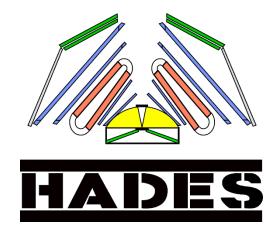
Test of a Kinematic Fitting Procedure for the Λ Decay in the pK⁺Λ Final State at HADES

Jenny Regina

Uppsala University
Department of Physics and Astronomy

PANDA Collaboration Meeting October 28, 2020 Hyperon Session



Outline

- Motivation
- Constraints for Fitter
- Tests
- Upcoming Features
- Outlook

Why Kinematic refit?

- Λ Polarization in pp reactions

Previous study:

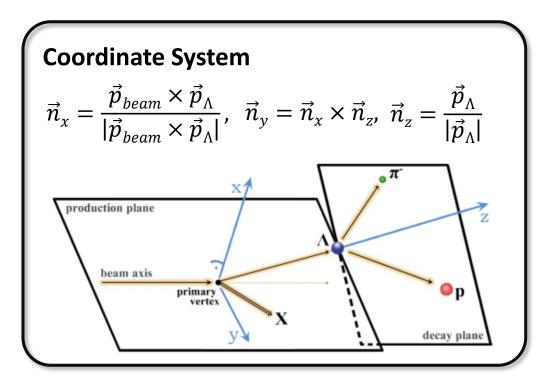
Polarization of Λ Hyperons In Proton-Proton Reactions At 3.5 GeV
 Measured With Hades, PoS(INPC2016)275

$$\frac{dN}{d\cos(\zeta)} = C(1 + \alpha P \cos(\zeta))$$

P-polarization

C-constant α -decay asymmetry parameter of Λ decay

- Difference between generated and reconstructed polarization angle show large uncertainty
 - Kinematic refit might improve resolutions and hence results



Constraints

 Kinematic fitting based on Lagrange multipliers has been implemented in Hydra (HADES Software)

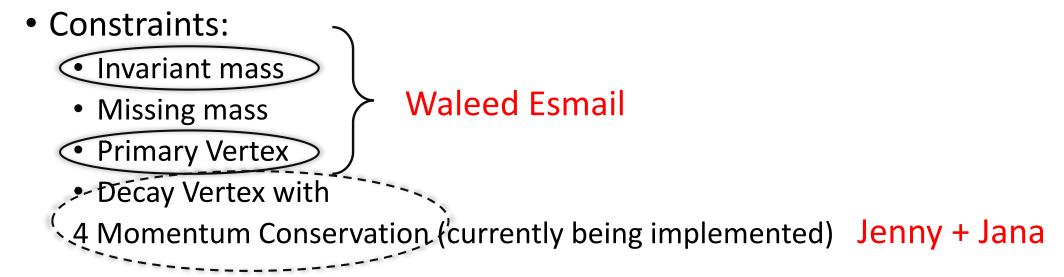
- Constraints:
 - Invariant mass
 - Missing mass
 - Primary Vertex
 - Decay Vertex with

Waleed Esmail

4 Momentum Conservation (currently being implemented) Jenny + Jana

Constraints

 Kinematic fitting based on Lagrange multipliers has been implemented in Hydra (HADES Software)



Procedure, Lagrange Multiplier Technique

Equations

$$\chi^{2} = (y - \eta)^{T} V^{-1} (y - \eta) = minimum$$

$$f_{K} (\eta_{1}, \eta_{2}, ..., \eta_{N}, \xi_{1}, \xi_{2}, ..., \xi_{J}) = 0$$

$$f(\eta, \xi) = 0$$

f- constraint function

 η – set of measured quantities

 ξ – set of unmeasured

quantities

y- vector of fitted quantities

 λ - Lagrange multiplier

$$\chi^2 = (y - \eta)^T V^{-1} (y - \eta) + 2\lambda^T f(\eta, \xi) = minimum$$

Finding parameters minimizing equations

$$\nabla_{\eta} \chi^2 = -2V^{-1}(y - \eta) + 2 F_{\eta}^T \lambda = 0$$

$$\nabla_{\xi} \chi^{2} = 2F_{\xi}^{T} \lambda = 0$$

$$\nabla_{\lambda} \chi^{2} = 2 f(\eta, \xi) = 0$$

$$(F_{\eta})_{ki} = \frac{\partial f_{k}}{\partial \eta_{i}} \quad (F_{\xi})_{kj} = \frac{\partial f_{k}}{\partial \xi_{j}}$$

Procedure

Solution can be found iteratively

1.
$$\xi^{\nu+1} = \xi^{\nu} - (F_{\xi}^T S^{-1} F_{\xi})^{-1} F_{\xi}^T S^{-1} r$$

2.
$$\lambda^{\nu+1} = S^{-1}[r+F_{\xi}(\xi^{\nu+1}-\xi^{\nu})]$$

$$\mathbf{3.} \qquad \eta^{\nu+1} = y - V F_{\lambda}^T \lambda^{\nu+1}$$

$$V^{\nu+1} = V^{\nu} - V^{\nu} [F_{\eta}^{T} S^{-1} F_{\eta} - ((F_{\eta}^{T} S^{-1} F_{\xi}) (F_{\xi}^{T} S^{-1} F_{\xi})^{-1} (F_{\eta}^{T} S^{-1} F_{\xi})^{T})] V^{\nu}$$

where

$$r = f^{\nu} + F_{\eta}^{\nu}(y - \eta^{\nu})$$
 $S = F_{\eta}^{\nu}S^{-1}(F_{\eta}^{T})^{\nu}$

Track Representation and Constraints

Track Representation

$$\left(\frac{1}{p}, \theta, \varphi, R, Z\right)$$

- p particle momentum
- θ polar angle
- ϕ azimuthal angle
- R- closest distance of track to beam line
- Z- closest **point** along beamline

Invariant Mass Constraint, 1C fit

$$d = E^2 - P_x^2 - P_y^2 - P_z^2 - M^2$$

$$P_{x} = P \cdot \sin(\theta) \cdot \cos(\varphi)$$

$$P_{v} = P \cdot \sin(\theta) \cdot \sin(\varphi)$$

$$P_z = P \cdot \cos(\theta)$$

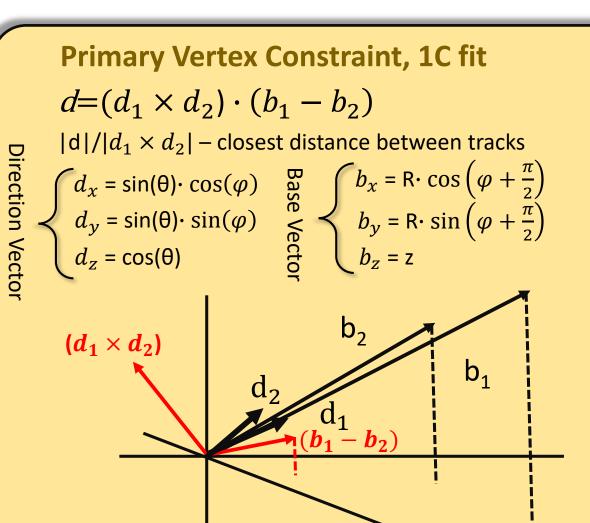
$$E = \sqrt{P^2 - M^2}$$

Track Representation and Constraints

Track Representation

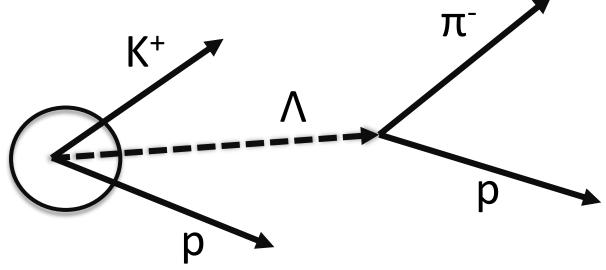
$$\left(\frac{1}{p}, \theta, \varphi, R, Z\right)$$

- p particle momentum
- θ polar angle
- φ azimuthal angle
- R- closest distance of track to beam line
- Z- closest **point** along beamline

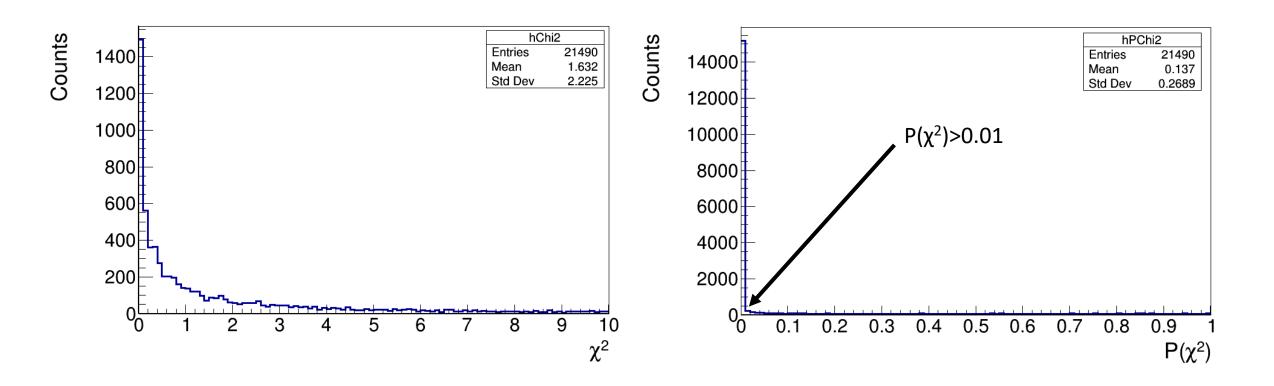


$p(3.5GeV)p->pK^+\Lambda$, $\Lambda->p\pi^-$

- 100 000 Pluto events
- Geant Particle ID used to identify p, π^- and K⁺
 - Only combinatorial background
- Mass constraint on p and π^-
- Primary Vertex Constraint on p and K⁺
- One iteration in Fitting procedure



χ² Invariant Mass Constraint



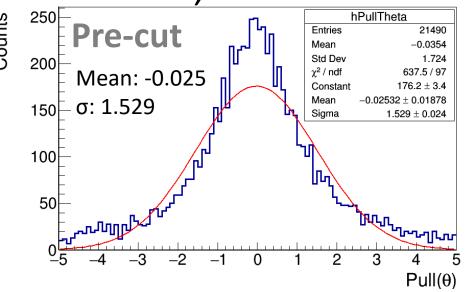
Pull Distributions, Mass Constraint

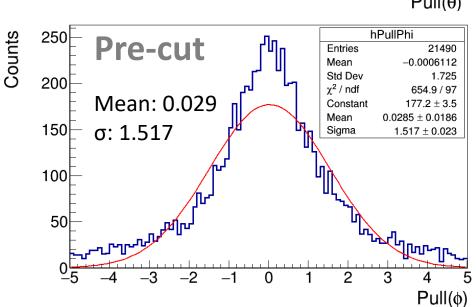
$$z_i = \frac{y_i - \eta_i}{\sqrt{\sigma^2(y_i) - \sigma^2(\eta_i)}}$$

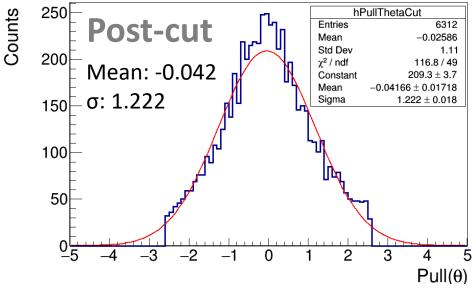
Ideally N(0,1)

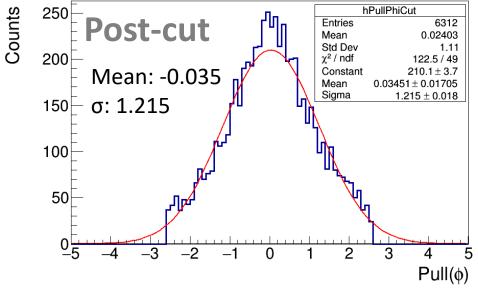
Effects of probability cut.

Eff. loss: 71%









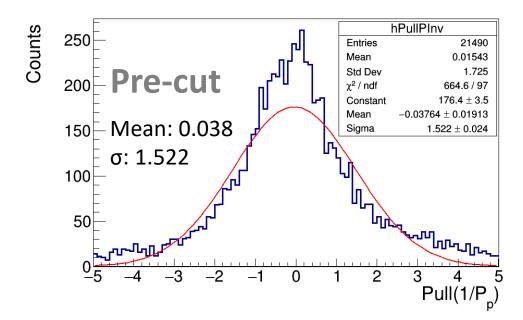
Pull Distributions, Mass Constraint

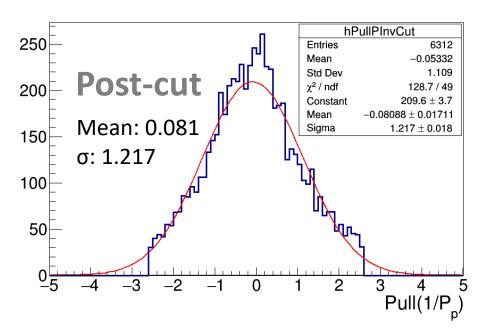
$$z_i = \frac{y_i - \eta_i}{\sqrt{\sigma^2(y_i) - \sigma^2(\eta_i)}}$$

Effects of probability cut.

Eff. loss: 71%

Ideally N(0,1)





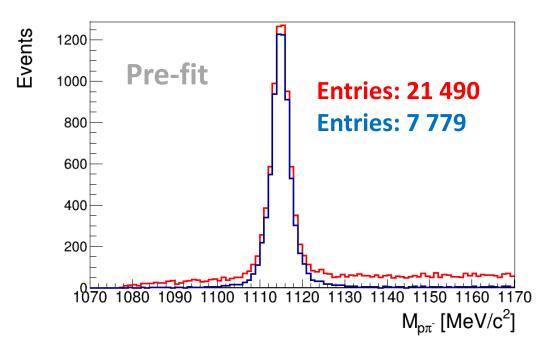
- Pull distributions have slightly larger σ than expected
- Applying $P(\chi^2)$ cut reduces σ but brings mean further away from 0

Invariant Mass

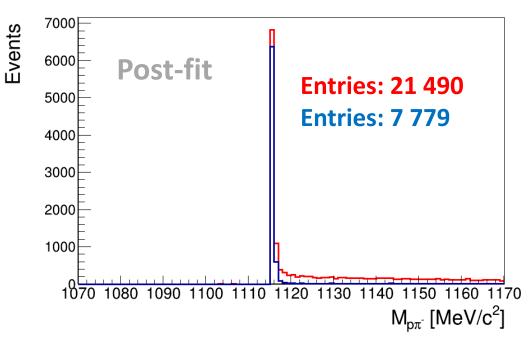
In Histograms:

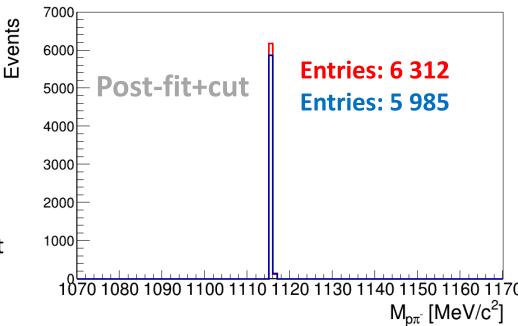
Red line: Combinatorial Background

Blue line: No Combinatorial Background

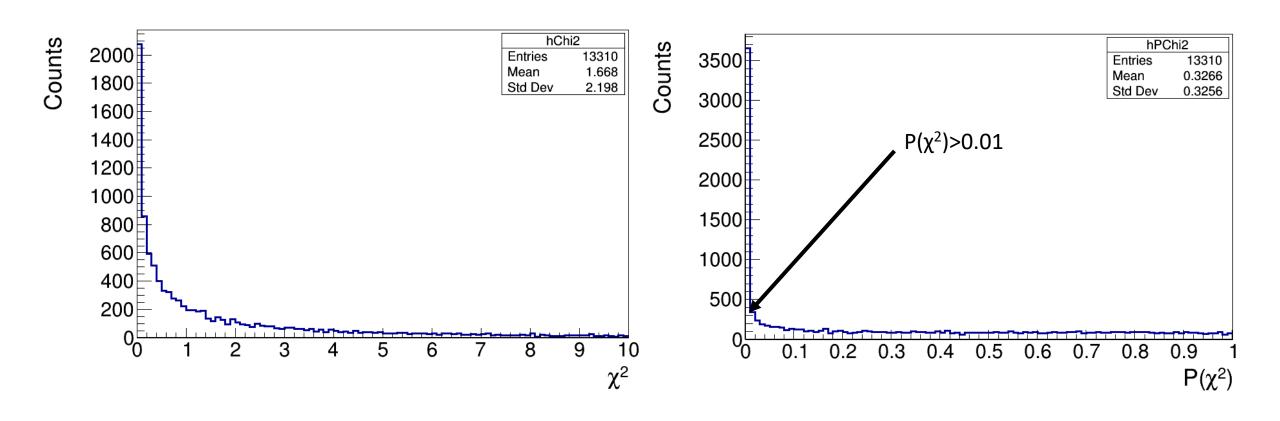


- Removing combinatorial background reduces σ of Pull Distr.
- Invariant mass spectra behaves as expected after refit and cut
- A large part of the events cut away by probability cut appears to be combinatorial background





χ² Primary Vertex Constraint



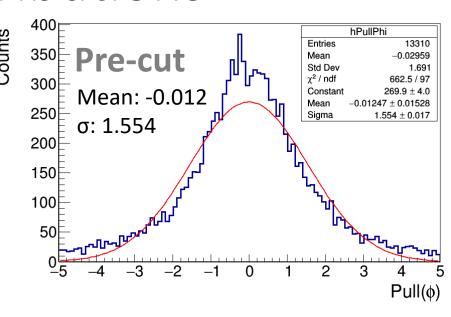
Pull Distributions

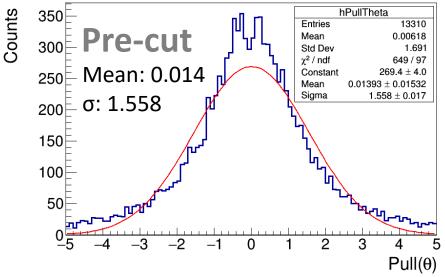
 $z_i = \frac{y_i - \eta_i}{\sqrt{\sigma^2(y_i) - \sigma^2(\eta_i)}}$

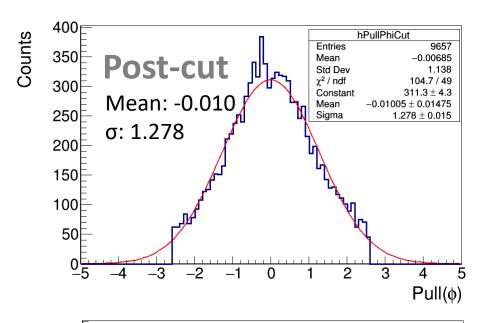
Ideally N(0,1)

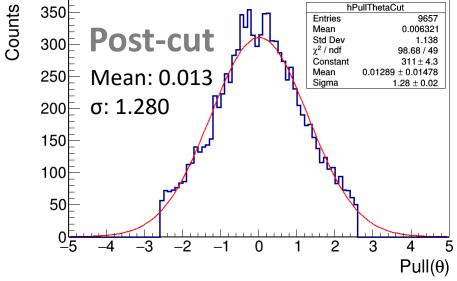
Effects of probability cut.

Eff. loss: 27%









Pull Distributions

Counts

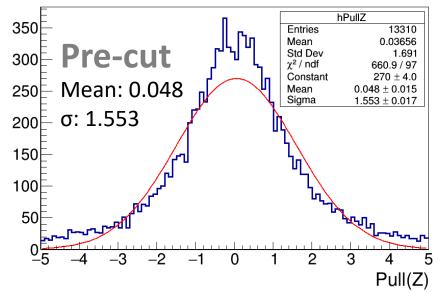
 $z_i = \frac{y_i - \eta_i}{\sqrt{\sigma^2(y_i) - \sigma^2(\eta_i)}}$

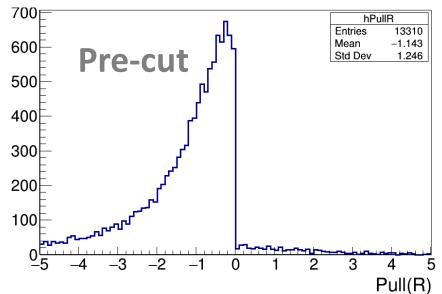
Ideally N(0,1)

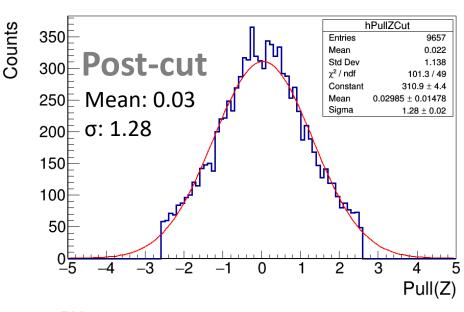
Effects of probability cut.

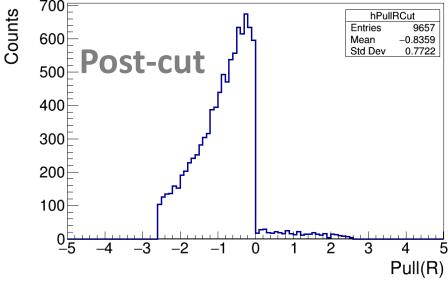
Eff. loss: 27%

- Pull for R needs to be explained
- Pull distributions have slightly larger σ than expected
- Applying P(χ²) cut reduces σ and brings the mean closer to 0





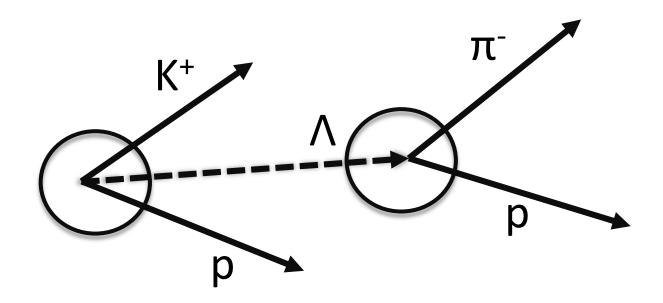




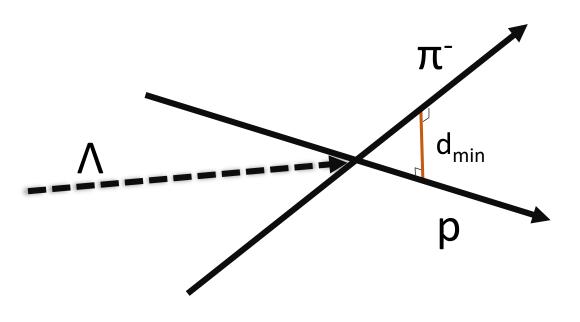
$p(3.5GeV)p->pK^{+}\Lambda, \Lambda->p\pi^{-}$

Next Steps:

Apply decay vertex and Momentum Conservation constraint for p, π^- and Λ Use together with additional constraints



Decay Vertex Handling

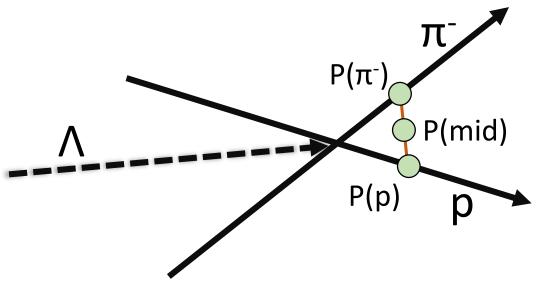


Presently: Point Of Closest Approach

- Calculate minimum distance between charged tracks
 - Charged tracks rejected as pairs if too far from each other

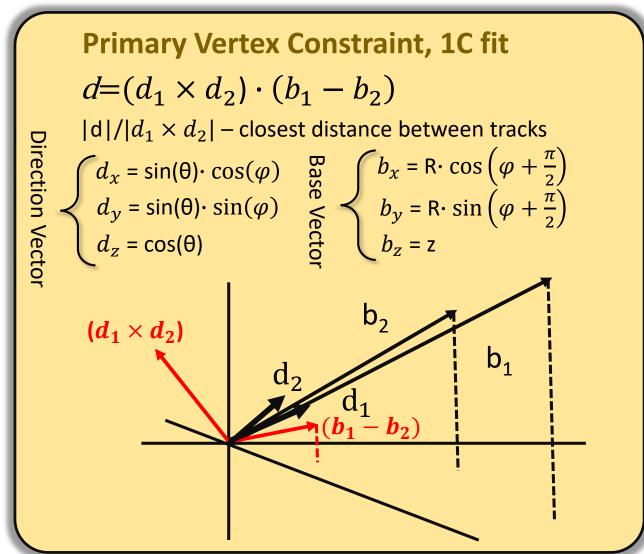
Question: could a decay vertex, utilizing momentum conservation, fit improve the momentum resolutions and hence the analysis results?

Track Representation and Constraints



Evaluate θ and φ at $P(\pi^-)$ and P(p)Or Evaluate θ and φ at P(mid)

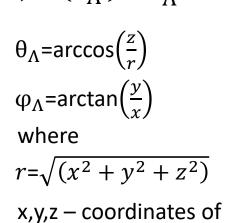
Work In Progress!



4 Momentum Conservation In Decay Vertex

Constraint Eqs. f, with measured, η , and unmeasured, ξ , quantities:

$$\begin{split} f_K\left(\eta_1,\eta_2,\ldots,\eta_N\,,\xi_1,\xi_2,\ldots,\xi_J\right) &= 0 \\ \text{where} \\ \overrightarrow{\eta} &= (P_{\pi^-},\theta_{\pi^-}\,,\phi_{\pi^-}\,,P_p\,,\theta_p\,,\phi_p\,,\theta_\Lambda\,,\varphi_\Lambda) \\ \overrightarrow{\xi} &= (P_\Lambda) \quad P_\Lambda \text{ - need start value for iterations} \end{split}$$



calculated decay vertex

$$f_{1} = -p_{\Lambda}sin\theta_{\Lambda}cos\varphi_{\Lambda} + p_{\pi^{-}}sin\theta_{\pi^{-}}cos\varphi_{\pi^{-}} + p_{p}sin\theta_{p}cos\varphi_{p} = 0 \quad (p_{x})$$

$$f_{2} = -p_{\Lambda}sin\theta_{\Lambda}sin\varphi_{\Lambda} + p_{\pi^{-}}sin\theta_{\pi^{-}}sin\varphi_{\pi^{-}} + p_{p}sin\theta_{p}sin\varphi_{p} = 0 \quad (p_{y})$$

$$f_{3} = -p_{\Lambda}cos\theta_{\Lambda} + p_{\pi^{-}}cos\theta_{\pi^{-}} + p_{p}cos\theta_{p} = 0 \quad (p_{z})$$

$$f_{4} = -\sqrt{p_{\Lambda}^{2} + m_{\Lambda}^{2}} + \sqrt{p_{\pi^{-}}^{2} + m_{\pi^{-}}^{2}} + \sqrt{p_{p}^{2} + m_{p}^{2}} = 0 \quad (E).$$

Comparison to PandaRoot

4C Fit

PandaRoot

Constrain the final state particles to pbar-p system

Benefit: pbar-p system known basically without errors

Hydra

Constrain final state particles to intermediate state, e.g. Λ

Benefit: do not need all final state particles but only Λ decay products

Summary

- Kinematic fitting procedure based on Lagrange multipliers exist
 - Constraints: invariant mass, missing mass, primary vertex, invariant mass + primary vertex
- Results of mass and primary vertex_constraint look promising for the channel p(3.5GeV)p->pK $^{+}\Lambda$, Λ -> p π

Outlook

- Finalize implementation and testing of decay vertex fitting procedure and 4 Momentum constraints
- Covariance matrix need further optimization
- Optimization needed for stopping criteria for number of iterations
- Apply for spin observables measurement in decay $\Lambda \rightarrow p\pi^{-}$

Summary

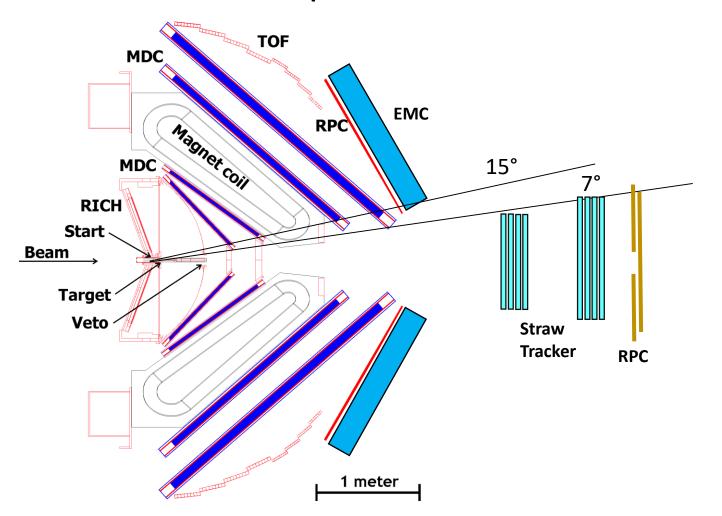
- Kinematic fitting procedure based on Lagrange multipliers exist
 - Constraints: invariant mass, missing mass, primary vertex, invariant mass + primary vertex
- Results of mass and primary vertex constraint look promising for the channel p(3.5GeV)p->pK $^{+}\Lambda$, Λ -> p π

Thank You for your attention!

2uestions?

Backup

HADES Setup



FAIR Phase-0 Upgrade

EMC:

improved energy information for electrons and leptons

Straw Tracker:

Based on PADNA ST

RPC:

Resistive Plate Chambers TOF information

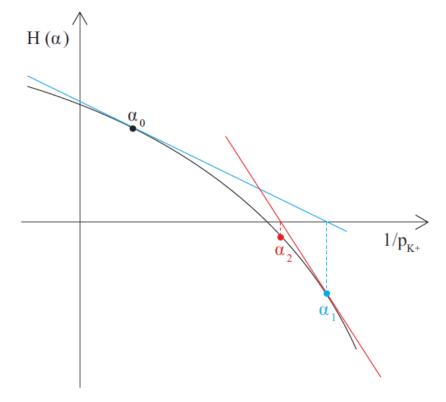
Example Constraint Function

From:

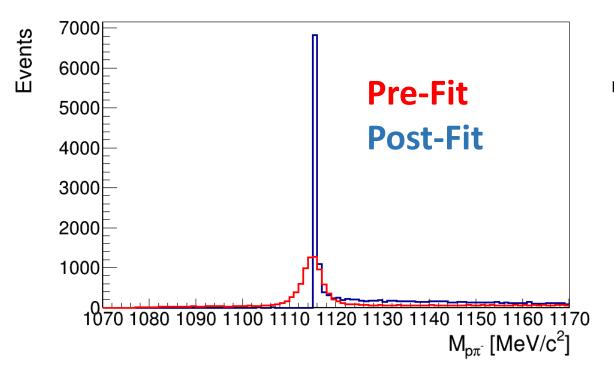
https://hades.gsi.de/sites/default/files/web/media/documents/thesis/Diploma/Exclusive_analysis_o f_the_Lambda(1405)_resonance_in_the_charged_Sigma-

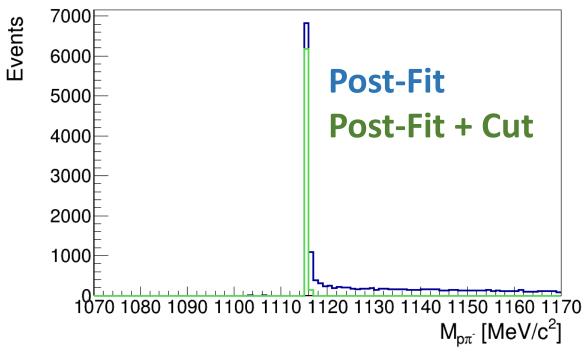
pi decay channels in proton proton reactions with HADES Johannes Siebenson 2011-

Jan.pdf



Invariant Mass





Entries

Pre-fit: 21 490

Post-fit: 21 490

Post-fit+cut: 6 312

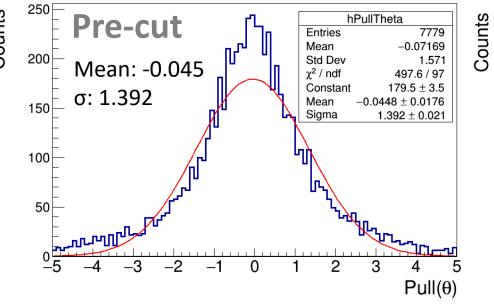
Pull Distributions, No Combinatorial Bkg.

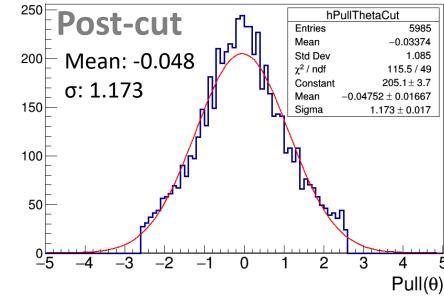
$$z_i = \frac{y_i - \eta_i}{\sqrt{\sigma^2(y_i) - \sigma^2(\eta_i)}}$$

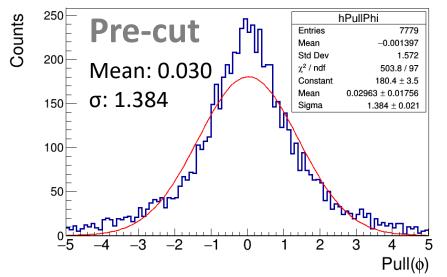
Ideally N(0,1)

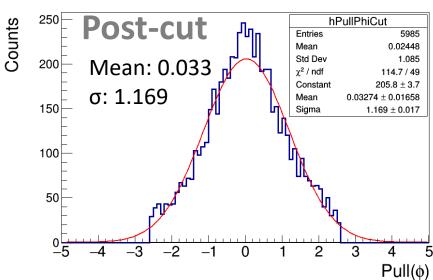
Effects of probability cut.

Eff. loss: 23%









Pull Distributions, No Combinatorial Bkg.

$$z_i = \frac{y_i - \eta_i}{\sqrt{\sigma^2(y_i) - \sigma^2(\eta_i)}}$$

Effects of probability cut.

Eff. loss: 23%

Ideally N(0,1)

