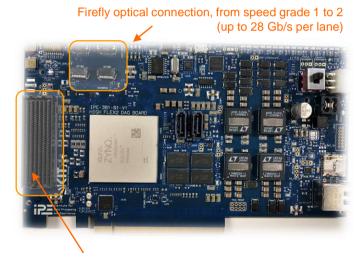


Status of High-flex and novel DAQ architecture for PANDA

Michele Caselle, Suren Chilingaryan, Timo Dritschler, Andreas Kopmann, Weijia Wang

Outline

- Status of High-Flex PCIe card
 - Status and what's next

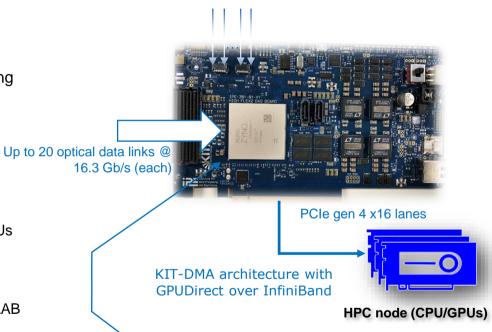

- Novel heterogenous FPGA-GPUs DAQ architecture based on emerging ethernet protocols
 - → An evolution of the GPUDirect technology over Ethernet / InfiniBand
- High-throughput, low latency networking with RDMA over InfiniBand and Ethernet, using RoCE extension
 - → Next talk by Timo Dritschler (KIT)

Development and production of High-Flex

- First version of the High-Flex card
 - Successfully produced and High-Flex fully tested
 - Results / performances already presented during the previous PANDA CM 20/1 (DAQ session)
 - Minor layout adaption was necessary
- Second version of the High-Flex
 - Layout completed
 - Two cards produced and partially tested
 - One card sent to external company for FPGA mounting
 - First card with FPGA mounted, will be available at IPE (next week)
 - Final test and characterizations
 - Card potentially available for PANDA

FMC+ improved the layout of few GTH/GTY transmission lines (not necessary for PANDA)

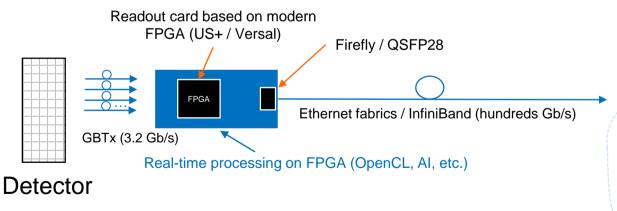
Just to remind ...


- Developed within the project "Detector Technology and System Platform" of the Helmholtz Association of German Research Centers (HGF) coordinated at KIT (POF III)
- Application fields: HEP, beam diagnostics, superconducting sensors and quantum technologies, AI, many others ...

Features:

- Developed for massive data throughput (> 210 Gb/s)
- Firmware based by KIT-DMA for heterogenous FPGA-GPUs
- Powerful ZYNQ US+ devices (up to 3K DSP slides)
- Focus on algorithms (Host ↔ Kernel architecture)
- Data Processing on FPGA: C/C++, OpenCL, Python, MATLAB
- Fast AI inference on ZYNQ: HLS4ML, DPUs (Deep-neural Processor Units)

Up to 12 full-duplex optical data links Firefly @ 28 Gb/s (each)


What's about the next evolution of DAQ?

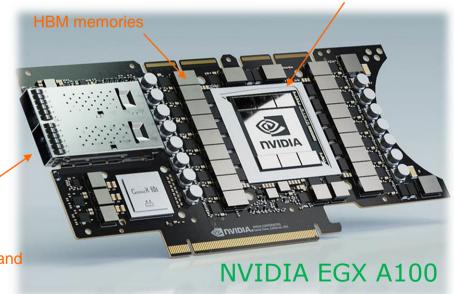
- New challenges: scalability, commercially available hardware, easily upgradeable and easy to maintain, etc.
 - Readout card based on multiple high-throughput emerging ethernet connections (no PCIe)
 - Directly connected to commercial devices: ethernet switches, GPUs, accelerator cards (i.e. Xilinx Alveo)

Heterogenous FPGA – GPUs/CPUs

Focus on algorithms, High-level synthesis (C/C++, OpenCL, AI) → to remove major barrier on hardware development and allowing developers with little or no FPGA expertise to deploy complex data processing on FPGA

GPUs and/or Alveo, etc.

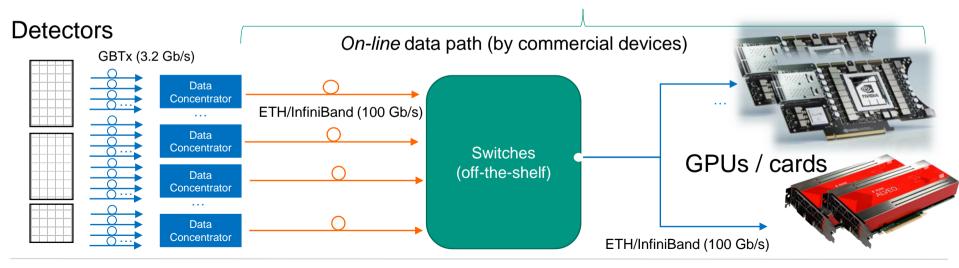
New generation of GPU cards

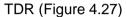

New generation combines GPU and Network (NIC) all in a single PCIe card.

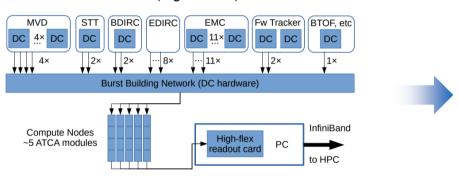
NNIDIA Ampere GPU 3rd generation of Tensor Core

- Features:
 - NVIDIA A100 Ampere-based GPU
 - Mellanox ConnectX-6 Dx NIC
 - Up to 200 Gbps on a single card
 - InfiniBand for GPU-to-GPU communication
 - New concept of "GPUDirect" over ETH

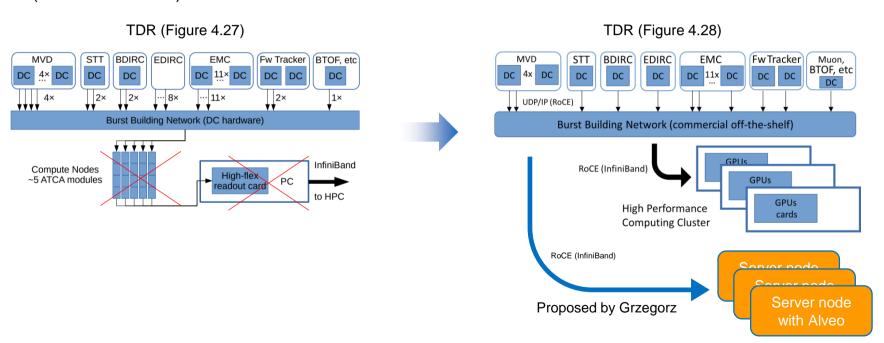
Mellanox ConnectX-6DX

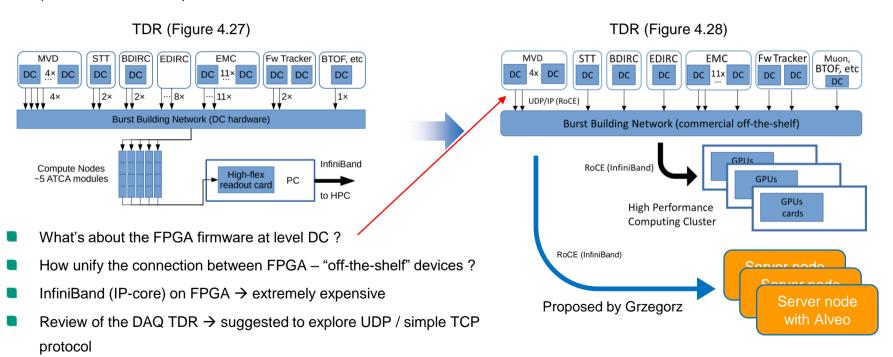

Dual 100 Gb/s ethernet fabrics or InfiniBand


DAQ for detector

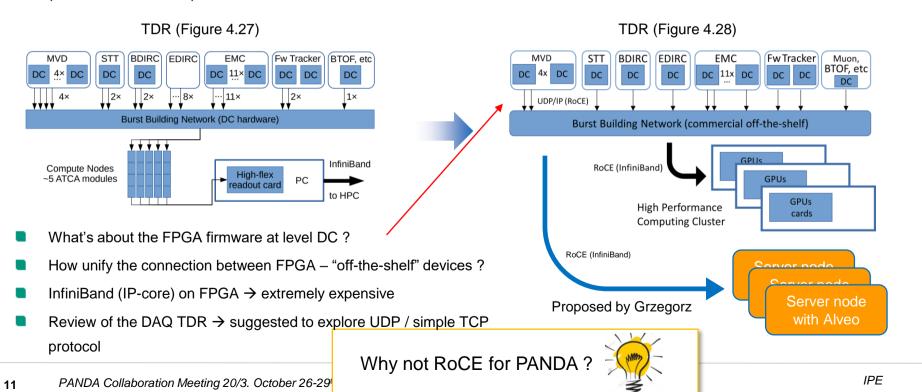


- More complex DAQ scheme with many sub-detectors
- Modern FPGA devices provide multiple data-links over 100 Gb/s → dramatic reduction of the number of offdetector cards and optical data links
- On-line data path covered by off-the-shelf devices → dramatic reduction of custom electronics
- Heterogenous architecture





 New DAQ architecture very similar to the proposed DAQ scheme from Dr Grzegorz Korcyl (PANDA CM 20/1)



New DAQ architecture very similar to the proposed DAQ scheme from Dr Grzegorz Korcyl (PANDA CM 20/1)

 New DAQ architecture very similar to the proposed DAQ scheme from Dr Grzegorz Korcyl (PANDA CM 20/1)

Roce on FPGA

- RoCE (RDMA over Converged Ethernet) is a **standard**, offers a **non-complex UDP/IP protocol** which could incapsulate InfiniBand packets
- Higher RDMA performance over 100G direct implementation on modern FPGA by the Xilinx IP-core (free), ETRNIC (Embedded Target RDMA enabled NIC)
- Fully supported by commercial devices: switches, GPUs, Alveo, etc.
 - Toward an unified ETH protocol for PANDA
- RoCE IP-core should be fully compatible with the current Data Concentrator
- Available a KIRO (KIT InfiniBand Library) which support also RoCE
 - Library potentially ready for PANDA phase 0 and evaluation tests

IP Facts

Introduction

The Xilinx® ETRNIC™ (Embedded Target RDMA enabled NIC) IP is a target only implementation of RDMA over Converged Ethernet (RoCE v2) enabled NIC functionality. This parameterizable soft IP core can work with a wide variety of Xilinx hard and soft MAC IP implementations providing a high through-put, low latency and completely hardware offloaded reliable data transfer solution over standard Ethernet. The ETRNIC IP allows simultaneous connections to multiple remote hosts running RoCE v2 traffic.

Features

Support for Endpoint RDMA functionality

Packet retransmission on errors in hardware

Core Specifics	
Supported Device Family ⁽¹⁾	Kintex UltraScale+ Th Virtex® UltraScale Virtex UltraScale+ Zynq® UltraScale-
Supported User Interfaces	AXI4-Lite, AXI4-full, and AXI4-Streaming
Resources	Performance and Resource Utilization
	Provided with Core
Design Files	Encrypted RT
Example Design	Verilo
Test Bench	Not provide
Constraints File	Xilinx Design Constraints (XDC
Simulation Model	Not provide
Supported S/W Driver(2)	Indicate the supported software driver type N/A/ Stand-alone/Stand-alone and Linu
T	ested Design Flows(2)
Design Entry	Vivado® Design Suit Vivado IP Integratio
Simulation	For supported simulators, see th Xilinx Design Tools: Release Notes Guide
Synthesis	Vivado Synthesi
	Support
Provided by	Xilinx at the Xilinx Support web page

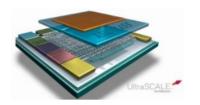
LogiCORETH ID Easts Table

More details: Timo's talk

Conclusions & what's next

- High-Flex is potentially available for PANDA (mid-Nov. 2020)
- Proposed DAQ scheme for PANDA based on off-the-shelf devices
 - DAQ scheme well compatible with the proposed DAQ from Dr Grzegorz Korcyl
- Proposed an unified ETH connections for PANDA
 - To connect FPGA cards and commercial devices
- RoCE IP-core could potentially implemented on existing devices and future Data Concentrator cards
 - A FPGA "common readout infrastructure" based on RoCE is under development at KIT
- Library KIRO available for PANDA

Many thanks for your attention



Backup

14

FPGA - Al platform: HighFlex 2

- Processor System (ARM): User Applications
- Programmable Logic (FPGA): fast and low latency application

Front-End: KAPTURE KALYPSO FMC

Data throughput (fulldiplex) up to 336 Gbps

Compatible with standard FMC

- PCIe Gen 4 (x8 or 16 lanes)
- Data rate up to 240 Gbps

Two SSD raid Local data storage

HighFlex 2 FPGA: ZYNQ Ultrascale plus

System Logic Cell: 653 K Flip-Flops: 597 K LUT: 298 K Distributed RAM: 9.1 Mb Block RAM: 21.1 Mb UltraRAM: 22.5 Mb **DSP Slices:** 2928 PL-DDR4: 2 GB

AMBA AXI4 interfaces for primary data communication

- Quad-core Arm Cortex-A53
- NEON & Single/Double Precision Floating
- PS-DDR4: 4 GB