Status Barrel EMC of the

Target Spectrometer

HIC for FAIR Helmholtz International Center

Markus W. H. Moritz

2nd Physics Institute, Giessen University, Germany

PANDA CM, October 2020

Barrel Calorimeter of the PANDA Target Spectrometer

October 28th 2020

⁻Markus W. H. Moritz-

Status Overview

Envisaged milestone (M8): Assembly of 1st full Barrel EMC slice

- Infrastructure
- Mechanics
- 710 detectors
 - 710 crystals in 11 different geometries ✓
 - 1420 APDS
 - Screening including irradiation ✓
 - Matching
 - Glueing
 - Capsules
 - Wrapping
 - Assembly of 18 modules
- Assembly of Supermodules
 - 360 left and 360 right handed APFEL-ASIC with flex PCBs
 - ASIC housing or fixtures
- Assembly of full 1st slice
 - (Re-)design supportbeam
 - Mod. preseries supportbeam
 - Cooling & thermal insulation
 - Backplanes
 - Light pulser fiber coupling

CAD ready in progress in progress in progress

Х

Assembly Procedure – Light Pulser Monitoring-

Assembly Procedure – Light Pulser Monitoring-

- Space very limited
- Fiber long term bending radius: 33 mm
- Idea: route fibers from up and downstream
 - Advantage:
 - More fibers can directly coupled
 - Rest (39X10) with 90° prism
 - Disadvantage:
 - 1€/m of single fiber

Backplanes

3 Layers

- Top: HVD board
 - Adjust bias voltage of 8 APDs
 - 50V from HV input downwards in < 0,1V steps
 - All channels fed from the same HV source
 - \rightarrow safes space inside support beam
 - Online measurement of APD voltage and current
- Middle: Connector board to multiplexer boards
- **Bottom: Board for FlexPCBs / ASICS**
 - Connectors to FEs
 - 8x2 Diff. Line drivers
 - **APFEL I/F buffers**
 - Temp/Humidity sensors
 - **HitDetection ASIC**

6

HVD board

N-Mosfet

Backplanes

3 Layers

Top: HVD board

- Adjust bias voltage of 8 APDs
- 50V from HV input downwards in < 0,1V steps
- All channels fed from the same HV source
 - \rightarrow safes space inside support beam
- Online measurement of APD voltage and current
- Middle: Connector board to multiplexer boards
- **Bottom: Board for FlexPCBs / ASICS**
 - Connectors to FEs
 - 8x2 Diff. Line drivers
 - **APFEL I/F buffers**
 - Temp/Humidity sensors
 - **HitDetection ASIC**

HVD board

N-Mosfet

HVD test-board for full functionality tests before mass production

full triple sandwich tests with crystal matrix

Final prototype is currently in production

minor changes to the highvoltage regulation part and a decrease in size

Motivation

TDR resolution goal barely reached especially at low energies Energy Resolution in % PROTO120, 3x3 Matrix, 3 MeV Threshold PROTO60, 3x3 Matrix, 3 MeV Threshold PROTO60, 3x3 Matrix, 1 MeV Threshold 12 PROTO60, Complete Matrix, 1 MeV Threshold PROTO60 SADC, 3x3 Matrix, 2 MeV Threshold PROTO 120 Depolished, 3x3 Matrix, 2.8 MeV Threshold DANDA EMC TOP 10 0 100 200 300 400 500 600 700 Energy in MeV light yield loss / % 30 25 20 15 10 0 25 50 75 100 125 150 175 200 dose / Gy

Fast light yield loss within first few gray

REMINDER - APD Gain Optimization – Light Pulser Measurements

October 28th 2020

Justus-Liebig-University Giessen

10

REMINDER - APD Gain Optimization – Light Pulser Measurements

11

Setup

- 3x3 Matrix rectangular crystals @ -25°C
- 2 full screened & matched APDs per crystal
- Close to final read out
- Light Pulser
 - One fiber per Crystal
- Calib. reference in cooling box: fiber into APD with Basel preamp
- Tagged photons 29 MeV 427 MeV

Procedure

- Limited amount of SADC channels \rightarrow dedicate run for each APFEL setting
- Beam into the center
- SADCs raw data collected
 - FPGAs have not been used

ASIC\APD	150	300	400	500
$LG(\times 1)$	Beam&LP	Beam&LP	Beam&LP	Beam&LP
$HG(\times 16)$	$\operatorname{Beam}\&\operatorname{LP}$	Beam&LP	$\operatorname{Beam}\&\operatorname{LP}$	Beam&LP
$HG(\times 32)$	$\operatorname{Beam}\&\operatorname{LP}$	Beam&LP	$\operatorname{Beam}\&\operatorname{LP}$	Beam&LP
$HG(\times 16)$				Cosmic

APD Gain Optimization – Porototype Measurements MAMI A2

Analysis

- Feature extraction:
 - APFEL signals: Oliver Nolls FE
 - Basel preamp: simple peak sensing algorithn
- Each APD threaded as individual detector
 - -> Individual calibration

Analysis

October 28th 2020

-Markus W. H. Moritz-

Results

Results

Mechanics

- Remedy drawing pre-series slice Supportbeam ready
- Company offer received

• Fiber coupling monitor system

- CAD routing scheme almost finished
- More crystals could get direct coupling when routing from up and downstream

• APD gain

- Increased APD gain will significant improve resolution
- Evaluation optimum value ongoing

• HVD Backplane

- Final prototype ordered
- Start mass production soon
- Crystal production status
 - Production 3rd slice ongoing

APD Gain Optimization for the APFEL ASIC

PWO-II LY @ +18°C: 20 PMT-phe/MeV PWO-II LY @ -25°C: 100 PMT-phe/MeV (LY@18°C X4) APD covers ~13% crystal endface PMT QE = 20%, LAAP QE= $80\% \rightarrow 52$ APD-phe/MeV APFEL ASIC max Input: 8.5 pC

$$E_{max}(gain_{opt}500) = \frac{8.5 \, 10^{-12} C}{52 \cdot 1.6 \cdot 10^{-19} C / MeV \cdot 500} = 2043.3 \, MeV$$

October 28th 2020