

Giessen Cosmic Station - Current Measurements

<u>Simon Bodenschatz</u>, Lisa Brück, Michael Düren, Avetik Hayrapetyan, Jan Niclas Hofmann, Sophie Kegel, İlknur Köseoğlu, Jhonatan Pereira de Lira, Mustafa Schmidt, Marc Strickert

Online PANDA Meeting

October 27, 2020

Overview

Track Reconstruction

Track reconstruction via position measurement in two planes

Components

The test stand consists of

- Two scintillating plates defining a trigger
- Four layers of scintillating bars (track reconstruction)
- About 45 cm of lead in between the trigger plates (energy selection)

Overview

Figure: Annotated CAD drawing of the GCS.

Updated Components

Trigger Plates

- PMTs in the corners replaced by SiPMs
- Moved closer to ceiling (due to smaller form factor)

Finger Counters

- Cross replaced by small scintillating block
- Readout via two SiPMs

Radiator Plate

Figure: The new radiator plate inside the clean room.

DISC-DIRC Measurement

Goal of the Measurement

 Cherenkov Angle Reconstruction and Resolution Estimation with the new Radiator inside GCS

Problem: Light shielding

- Old prototype box too small
- Discussed alternatives:
 - New Rigid Box (Long lead time)
 - Tent-like construction
 - No additional shielding (Rely on Cleanroom)

Light level checked using human eyes and SiPMs
Cleanroom is dark enough!

DISC-DIRC Measurement

Goal of the Measurement

 Cherenkov Angle Reconstruction and Resolution Estimation with the new Radiator inside GCS

Problem: Light shielding

- Old prototype box too small
- Discussed alternatives:
 - New Rigid Box (Long lead time)
 - Tent-like construction
 - No additional shielding (Rely on Cleanroom)

Light level checked using human eyes and SiPMs

Cleanroom is dark enough!

DISC-DIRC Measurement

The setup includes ...

- One MCP coupled to three focusing elements
- Pulser and laser with diffuser
- The new radiator plate

Readout

- All components read out via TOFPET (including GCS)
- \blacktriangleright pprox 460 active channels on 9 ASICs
- System is running in mixed polarity mode (4 ASICs negative, rest positive)

Figure: Schematic drawing of the measurement setup.

Figure: Positioning of the radiator inside the GCS.

Figure: Readout module and MCP during installation.

Figure: Positioning of the laser.

Problems

List of encountered problems during first weeks of running

- Light of the neighbouring lab hitting the MCP
 - Culprit: Cable feedthrough into the cleanroom (solved)
- Cleanroom temperature control offline (solved)
 - Slow temperature drift (almost invisible with default dashboard settings)
- Unstable low voltage power supply (replaced)
- Maximum disk capacity hit (solved)
- Degraded timing performance in one of the fronted-modules
- Some dead channels in the negative polarity ASICs

Tracking Fully Operational

Figure: Reconstructed tracks in coincidence with the finger counter.

Koinzidenz von MCP-Hits and Tracking

Figure: Time difference between tracking box and MCP.

New Radiator Case

New Radiator Case

- Expected in the next few weeks
- ROM-Case larger than final design
- Soft material (dots/strings) on lid to protect radiator

Cooling

Cooling of the Readoutboard

- First iteration of final Readoutboards expected soon
- Cooling considerations, planning and design started
- Currently air flow based cooling used in GCS
 - Unsuitable for final design
 - Liquid based cooling instead
 - Testing device available (CC4150, -20 °C to 200 °C)

Design for Prototype & Phase 1

Prototype in Phase I

- Inclusion of prototype in PANDA Phase I
- Number of ROMs strongly dependent on funding
 - Desired: 16 ROMs
 - 3 ROMs available from current prototypes
- Mounting plate and stabilizing cross needs to be built

Thank you!

Reconstruction - Angular Acceptance

Figure: Angular acceptance without trigger.

Tracking Boxes

Figure: One of the tracking boxes without lid.

Tracking Boxes

Geometry of the bars

- 48 bars (15 × 10 × 500 mm) in two half-layers shifted against each other
- Second layer rotated by 90° for position resolution along the other axis
- Every layer in a separate light-proof box

Trigger Plates

Figure: One of the 50 \times 50 cm^2 trigger plates with PMT-Readout.

Absorber

Figure: Energy deposition in the trigger after passing though the lead (top), the Cherenkov angle range (bot) and the estimated threshold (red).

Wavelength cut: 200 nm < λ < 800 nm // Energy deposition obtained from Monte Carlo.