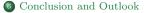
Status of Deep Machine Learning on PANDA Software Trigger PANDA Collaboration Meeting 20/3, 26-30 Oct, 2020

P.Jiang^{1,2 a} K.Goetzen¹ R.Kliemt¹ F.Nerling¹ K.Peters¹

¹GSI Helmholtz Center for Heavy Ion Research GmbH(GSI), Darmstadt, Germany
²Institute of Modern Physics, Chinese academy of sciences(IMP,CAS), Lanzhou, China

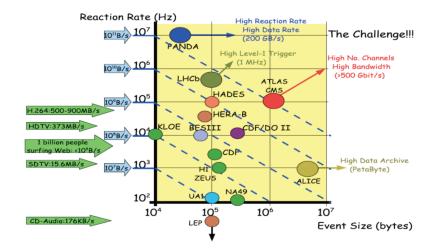
a Supported by China and Germany Postdoctoral Exchange Program 💈 🗃 🗦 👘 🛓 🔊 ۹. (~ 1/26

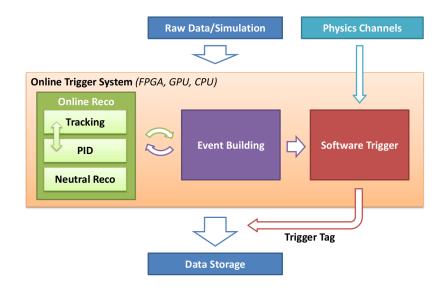

	Deep Machine Learning Methods	Results Co: 000000000000000000000000000000000000
Outline		

2 Previous Status

3 Deep Machine Learning Methods

Physics Channels and Data

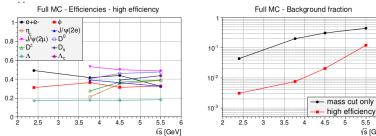

6 Results


Acknowledgement

- Previous Status
- B Deep Machine Learning Methods
- Physics Channels and Data
- 6 Results
- 6 Conclusion and Outlook
- Acknowledgement

Introduction		Deep Machine Learning Methods	Physics Channels and Data	Results Co
000000	000000	000000	000000	000000000000000000000000000000000000000
Motivati	ion			

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 - の へ で 5/26



- Deep Machine Learning Methods
- Physics Channels and Data
- 6 Results
- 6 Conclusion and Outlook
- Acknowledgement

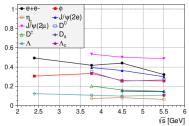
Introduction	Previous Status	Deep Machine Learning Methods	Physics Channels and Data	Results	\mathbf{C}
000000	000000	000000	000000	000000000000000000000000000000000000000	0

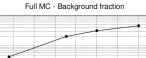
Conservative Results - High-Efficiency Selection

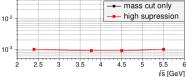
$\sqrt{s} \; (\text{GeV})$	ee	Phi	Etac	J2e	J2mu	D0	Dch	\mathbf{Ds}	Lam	Lamc	DPM
2.4	49.21	31.20	-	-	-	-	-	-	17.16	-	0.31
	97.23	87.59	-	-	-	-	-	-	86.71	-	7.05
3.77	41.67	36.44	21.41	39.27	53.24	40.64	27.66	-	17.84	-	0.76
	96.19	83.29	49.90	90.23	94.31	82.02	67.91	_	84.55	_	3.74
4.5	43.95	31.41	35.07	36.31	50.07	46.06	36.90	39.00	17.58	-	2.06
	96.81	72.32	66.67	84.62	90.92	83.76	72.74	73.12	81.46	_	6.58
5.5	32.54	32.85	38.91	32.43	48.76	47.68	39.18	43.81	18.40	43.79	12.24
	89.54	79.21	66.86	68.40	83.91	82.91	71.00	75.13	80.00	71.78	27.14

5.5 6

√s [GeV]


Introduction Previous Statu	s Deep Machine Learning Methods	Physics Channels and Data	Results C
000000 000000	000000	000000	000000000000000000000000000000000000000


Conservative Results - High-Suppression Selection


$\sqrt{s} \; (\text{GeV})$	ee	Phi	Etac	J2e	J2mu	D0	Dch	\mathbf{Ds}	Lam	Lamc	DPM
2.4	49.21	30.48	-	-	-	-	-	-	12.27	-	0.10
	97.23	85.57	-	-	-	-	-	-	62.00	-	2.27
3.77	41.67	33.21	7.35	39.26	53.23	34.55	20.19	-	10.65	-	0.09
	96.19	75.91	17.13	90.21	94.30	69.73	49.57	-	50.47	-	0.44
4.5	43.95	25.80	8.10	36.30	50.06	25.27	16.04	14.88	9.73	-	0.09
	96.81	59.41	15.40	84.60	90.90	45.95	31.62	27.90	45.09	-	0.29
5.5	32.05	25.47	6.37	29.85	48.59	26.51	14.68	14.51	10.60	10.81	0.10
	88.19	61.42	10.95	62.96	83.62	46.10	26.60	24.88	46.09	17.72	0.22

10-1

Full MC - Efficiencies - high suppression

Previous Status

3 Deep Machine Learning Methods

Physics Channels and Data

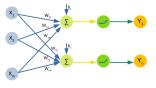
6 Results

6 Conclusion and Outlook

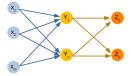
Acknowledgement

Neural Network

- The essence of Deep Machine Learning is Neural Network(NN).
- A NN is a fitting function.
- Linear fitting


Given k samples

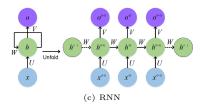
{input m-dimensional vector x; output n-dimensional vector y}, there is a linear fitting function $Y = w \cdot X + b$,

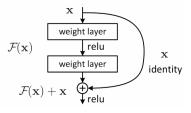

where w, weight, is a $n \times m$ matrix; b, bias, is a n-dimensional vector.

Nonlinearity

In order to increase nonlinear performance, a nonlinear function, activation function y = f(x), is introduced: $Y = f(w \cdot X + b)$

(a) Neurons


(b) Multi-layer


- Multiple layers
- Simplest NN $Y = w \cdot X$: Equivalent to Singular Value Decomposition(SVD) $\langle \Box \rangle \langle \overline{\Box} \rangle \langle \overline{\Box} \rangle \langle \overline{\Xi} \rangle \langle \overline{\Xi} \rangle \langle \overline{\Xi} \rangle \langle \overline{\Box} \rangle \langle \overline{\Box} \rangle$ 10/26

000000 0000000000000000000000000000000			Deep Machine Learning Methods	Physics Channels and Data	Results Co
	000000	000000	000000	000000	000000000000000000000000000000000000000

Neural Networks

(d) Residual network

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q 0 11/26

Previous Status

Deep Machine Learning Methods

Physics Channels and Data

5 Results

6 Conclusion and Outlook

Acknowledgement

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q C 12/26

Introduction	Previous Status	Deep Machine Learning Methods	Physics Channels and Data	Results C
000000	000000	000000	00000	000000000000000000000000000000000000000

Physics Channels and Data

Physics topic	Reaction channel	Code	Trigger	Tag
Electromagnetic	$p\bar{p} \rightarrow e^+e^-$	ee	$p\bar{p} \rightarrow e^+e^-$	e^+e^-
Exotics	$p\bar{p} \to \phi_{(1)}\phi_{(2)}; \phi_{(1)} \to \text{trigger}, \phi_{(2)} \to X$	Phi	$\phi \to K^+ K^-$	ϕ
Charmonium	$p\bar{p} \to \eta_c \pi^+ \pi^-; \eta_c \to \text{trigger}$	Etac	$\eta_c \rightarrow K_S K^- \pi^+$	η_c
	$p\bar{p} \rightarrow J/\psi \pi^+\pi^-; J/\psi \rightarrow \text{trigger}$	J2e	$J/\psi \rightarrow e^+e^-$	$J/\psi(2e)$
	$p\bar{p} \rightarrow J/\psi \pi^+\pi^-; J/\psi \rightarrow \text{trigger}$	J2mu	$J/\psi \rightarrow \mu^+\mu^-$	$J/\psi(2\mu)$
Open charm	$p\bar{p} \to D^0 \overline{D^0}; D^0 \to \text{trigger}; \overline{D^0} \to X$	D0	$D^0 \rightarrow K^- \pi^+$	D^0
	$p\bar{p} \to D^+D^-; D^+ \to \text{trigger}, D^- \to X$	Dch	$D^+ \rightarrow K^- \pi^+ \pi^+$	D^+
	$p\bar{p} \to D_s^+ D_s^-; D_s^+ \to \text{trigger}, D_s^- \to X$	\mathbf{Ds}	$D_s^+ \to K^+ K^- \pi^+$	D_s^+
Baryons	$p\bar{p} \to \Lambda \overline{\Lambda}; \Lambda \to \text{trigger}; \overline{\Lambda} \to X$	Lam	$\Lambda \rightarrow p\pi^-$	Λ
	$p\bar{p} \to \Lambda_c \overline{\Lambda}_c; \ \Lambda_c \to \text{trigger}; \ \overline{\Lambda}_c \to X$	Lamc	$\Lambda_c \rightarrow p K^- \pi^+$	Λ_c
Background	$p\bar{p}$ generic (DPM)	DPM	-	-

(a) Physics channels

$\sqrt{s} [\text{GeV}]$	$p_{\bar{p}} [\text{GeV}/c]$	ee	\mathbf{Phi}	Etac	J2e	J2mu	D0	Dch	\mathbf{Ds}	Lam	Lamc	DPM
2.4	1.91	Х	Х	_	-	_	-	_	-	Х	_	Х
3.77	6.57	Х	Х	х	Х	Х	Х	Х	-	Х	_	Х
4.5	9.81	Х	Х	X	X	X	X	X	Х	Х	_	Х
5.5		Х	Х	х	Х	Х	х	Х	Х	Х	Х	Х
					(b) I	Data						

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ Ξ のへで 13/26

Introduction	Previous Status	Deep Machine Learning Methods	Physics Channels and Data	Results Co
000000	000000	000000	000000	000000000000000000000000000000000000000

Observables

Short cut	Description
р	momentum p of reconstructed candidate (lab)
$_{\rm pt}$	transverse momentum p_t of reconstructed candidate
\mathbf{pcm}	momentum p of reconstructed candidate (cms)
е	energy e of reconstructed candidate (lab)
ecm	energy e of reconstructed candidate (cms)
tht	polar angle θ of reconstructed candidate (lab)
thtcm	polar angle θ of reconstructed candidate (cms)
mmiss	missing mass of reconstructed candidate
$di{p,pt,tht}$	kinematic variables from <i>i</i> -th daughter of candidate
dipidk, di pidp	Kaon/Proton PID probability of <i>i</i> -th daughter
pmax	maximum particle momentum in event (cms)
ptmax	maximum transvers particle momentum in event
sumpc	sum of momenta of charged particles in event (cms)
sumptc	sum of transverse momenta of charged particles in event (cms)
detemcsum	sum of cluster energies in EMC
detemcmax	maximum cluster energy in EMC
lnpide	Number of loose $(P > 0.25)$ electron candidates
lnpidmu	Number of loose $(P > 0.25)$ muon candidates
lnpidpi	Number of loose $(P > 0.25)$ pion candidates
lnpidk	Number of loose $(P > 0.25)$ kaon candidates
lnpidp	Number of loose $(P > 0.25)$ proton candidates
thr	Event shape: Magnitude of thrust of event (cms)
apl	Event shape: Aplanarity of event (cms)
fw1	Event shape: 1. Fox-Wolfram Moment $R_1 = H_1/H_0$ (cms)
fw2	Event shape: 2. Fox-Wolfram Moment $R_2 = H_2/H_0$ (cms)
fw3	Event shape: 3. Fox-Wolfram Moment $R_3 = H_3/H_0$ (cms)
fw4	Event shape: 4. Fox-Wolfram Moment $R_4 = H_4/H_0$ (cms)
fw5	Event shape: 5. Fox-Wolfram Moment $R_5 = H_5/H_0$ (cms)

۹*℃* 14/26

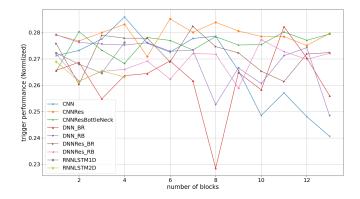
- Previous Status
- B Deep Machine Learning Methods
- Physics Channels and Data

6 Results

6 Conclusion and Outlook

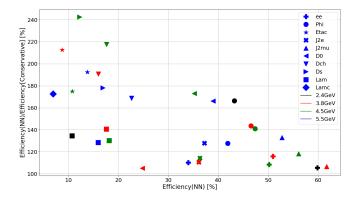
7 Acknowledgement

Introduction Previous Status Deep Machine Learning Methods Physics Channels and Data Results Co 000000 00000 000000 00000</


Multiclass Classification VS Binary Classification

Channels	Multiclass Classification[%]	Binary Classification[%]
ee	99.996	-
Phi	87.931	-
Etac	48.059	76.182
J2e	98.604	-
J2mu	99.876	99.999
D0	69.932	93.348
Dch	48.427	78.552
Ds	32.683	73.661
Lam	48.093	94.683

Conclusion: Used binary classification (one NN for individual physics channel) instead of multiclass classification (one NN for multiple physics channels).


Neural Network Selection

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の へ つ 17/26

Conclusion: CNN with 4 residual blocks was the final choice.

		Deep Machine Learning Methods	Physics Channels and Data	Results Co
				000000000000000000000000000000000000000
Compari	ison			

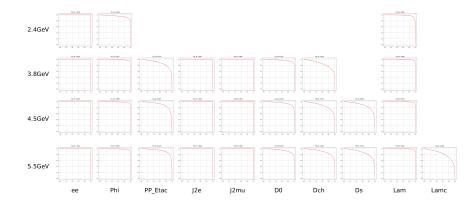
Conclusion: Deep machine learning optimized all physics channels from 105% to 245%. The better the performance of the channel, the smaller the gain from deep machine learning.

Introduction Pre	evious Sta 0000		ep Machi 2000				hysics Cl 00000		ind Data		000000000000000000000000000000000000000	000
Normal res	sults -	High	ı Supj	pressi	on Ef	fficie	ncy					
eff[%]	ee	Phi	pp Etac	J2e	J2mu	D0	Dch	Ds	Lam	Lamc	DPM	
Individual A			Efficiencie	s								
2.4GeV	59.86	67.85	· · · ·						36.31		1.59	
3.8GeV	40.33	56.75	34.69	35.46	61.57	57.31	63.78		29.95		0.32	
4.5GeV	37.26	56.50	34.73	35.73	55.47	60.58	60.27	66.74	27.20		0.25	
5.5GeV	26.90	44.68	20.72	36.38	51.10	56.90	50.23	56.81	21.59	52.79	0.16	
Individual P			encies									
2.4GeV	99.99	73.82							31.41		2.10	
3.8GeV	100.00	84.89	27.03	99.76	99.88	73.27	30.93		68.69		3.91	
4.5GeV	100.00	83.90	24.79	99.22	99.62	62.54	31.16	20.87	74.05		4.39	
5.5GeV	100.00	85.08	35.04	98.84	99.04	67.38	41.82	27.25	77.95	17.37	6.45	
Individual A			encies									
2.4GeV	59.86	50.09							11.40		0.03	
3.8GeV	40.33	48.18	9.38	35.37	61.50	41.99	19.73		20.57		0.01	
4.5GeV	37.26	47.40	8.61	35.45	55.25	37.89	18.78	13.93	20.14		0.01	
5.5GeV	26.90	38.02	7.26	35.96	50.61	38.34	21.01	15.48	16.83	9.17	0.01	
Total Absolu	te Reconstr	uction Effic	ciencies									
2.4GeV	61.25	71.79							38.35		32.03	
3.8GeV	57.50	73.04	80.23	74.34	81.54	80.69	83.00		32.66		38.25	
4.5GeV	55.06	71.75	81.15	73.31	77.69	80.73	84.42	83.61	29.33		43.37	
5.5GeV	37.22	63.74	75.99	70.21	74.73	77.00	79.91	79.63	22.78	73.87	44.81	
Total Relati	ve Trigger	Efficiencies	5									
2.4GeV	97.73	69.79							30.04		0.31	
3.8GeV	89.45	70.90	13.30	49.88	76.47	53.91	25.03		65.10		0.26	
4.5GeV	91.82	70.81	16.16	50.68	73.18	49.34	25.84	18.96	71.28		0.23	
5.5GeV	92.86	70.41	20.61	56.98	72.51	54.11	33.53	25.67	77.08	13.41	0.22	
Total Absolu	te Trigger	Efficiencies	5									
2.4GeV	59.86	50.10						· · · ·	11.52		0.10	
3.8GeV	51.43	51.79	10.67	37.08	62.36	43.50	20.77		21.26		0.10	
4.5GeV	50.56	50.81	13.12	37.15	56.85	39.83	21.82	15.86	20.91		0.10	
5.5GeV	34.56	44.88	15.66	40.00	54.19	41.67	26.79	20.44	17.56	9.91	0.10	
	-	-				1	-	-	-	-	-	

◆□ → < □ → < Ξ → < Ξ → Ξ · ○ Q ○ 19/26</p>

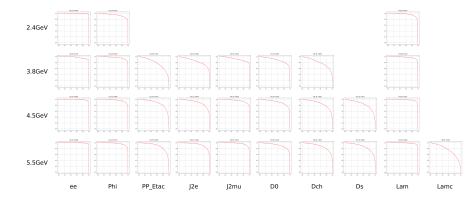
Individual: Cross trigger line was not taken into consideration. Total: Cross trigger line was taken into consideration.

Absolute: triggered events / simulated events


Relative: triggered events / reconstructed events

Reconstruction: Reconstructed events before trigger.

Trigger: Triggered events after trigger.


Normal results - ROCs - Individual

Conclusion: AUCs of "easier" channels were almost 1.

Normal results - ROCs - Total

Conclusion: It is the result of multiple neural networks acting on multiple datasets.

Introduction	Previous Status	Deep Machine Learning Methods	Physics Channels and Data	Results (
000000	000000	000000	000000	000000000000000000000000000000000000000

Normal - Observable Importance Ranking

ee		e	P		1	 Lam		n	Lamc		
branch	÷	proportion	branch	÷	proportion	branch	:	proportion	branch :	proportion	
xd1emcecal	:	0.034372	xpt		0.023953	xpt	:	0.022313	xpcm :	0.014811	
esprapmax	÷.,	0.031086	esfw2	1	0.020678	esnchrg	:	0.019366	xd0tht :	0.014777	
esfw4		0.029378	xd1sttdedx		0.019516	xd0sttdedx	:	0.019308	xd1pt :	0.014674	
xdltofbeta	÷.,	0.027659	essumenl	:	0.019145	mmiss	:	0.019065	essumetn :	0.014408	
xdlstthits	:	0.027595	xd1stthits	:	0.018924	xtht	:	0.019063	xd0pt :	0.014032	
xd0emcnx		0.025817	esnchrg		0.018905	essumen	:	0.018288	xpt :	0.013983	
xd0emcecal		0.025039	xd1mvdhits		0.018883	essumetnl	:	0.018153	xecm :	0.013976	
esnchrg		0.024598	xd0sttdedx		0.018726	xd1pt		0.017902	xd0stthits :	0.013649	
esnpart		0.023382	xd0pt		0.018370	xd0stthits		0.017719	xdlpidk :	0.013423	
xd1muonlay		0.023113	xd1tht		0.018345	xd0mvdhits		0.017715	essumenl :	0.013362	
mmiss	÷.,	0.023036	mmiss		0.018285	essumenl	:	0.017313	xdltht :	0.013054	
esdetemcmax		0.022775	xd0tht		0.018086	xd1mvdhits	:	0.017247	xd2pt :	0.012903	
xd0tofbeta	÷.,	0.022118	xd0mvdhits		0.017929	esfw4	:	0.017125	eslnpidk :	0.012765	
xd0stthits		0.021728	xdldrcthtc		0.017617	xd0pt	:	0.017110	esnchrg :	0.012661	
xthtcm		0.021585	xtht	1	0.017285	esthr	:	0.016890	xdltofbeta :	0.012103	
esapl		0.021350		:	0.017092	espla	:	0.016777	xd0mvdhits :	0.012089	
eslnpide		0.021106	essumetnl	:	0.016752	xd0tht	:	0.016091	xd1stthits :	0.011994	
xd0muonlay		0.020605	essumen		0.016698	esfw1		0.015982	essumen :	0.011810	
xd0pidpi		0.020540	xd0drcthtc	τ.	0.016664	xd0mvddedx		0.015362	xd2tht :	0.011774	
escir		0.020500	esprapmax		0.016491	xd0drcthtc	:	0.015228	xdlp :	0.011665	
espmin		0.020301	xd1mvddedx		0.016390	xd0emcecal	:	0.014805	xd0dscthtc :	0.011639	1
xd1pidpi		0.020027	xd0pidk		0.016285	esfw3	:	0.014672	xdlpidp :	0.011631	
esl1npide		0.019869	xdltofbeta		0.016045	xd1sttdedx		0.014648	esfw1 :	0.011628	
xd0dscthtc		0.019630	xd0tofbeta		0.015630	xd0tofbeta	:	0.014521	xdldscthtc :	0.011356	
esfw1		0.019074	xdlemcecal		0.015122	esnneut	:	0.014252	xdldrcthtc :	0.011336	
essumetnl	:	0.018277	esfw5	:	0.015054	esnranmax	•	0.013959	xd0tofheta :	0.011321	

Conclusion: Some observables were chosen based on this table for dimensionality reduction.

- Previous Status
- B Deep Machine Learning Methods
- Physics Channels and Data
- Results
- 6 Conclusion and Outlook
 - Acknowledgement

Conclusion and Outlook

- High-suppression selection was used for software trigger according to previous study.
- Binary classification was used instead of multiclass classification.
- Nine NN structures were compared and CNN with 4 residual blocks was the final choice.
- Deep machine learning optimized all physics channels from 105% to 245%.
- The final high-suppression efficiency was obtained.
- Individual and total ROCs were plotted.
- Observable importance ranking was calculated.

- Is it possible to add physics in?
- How to optimize the NN parameters slightly based on real experimental data?

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Previous Status
- B Deep Machine Learning Methods
- Physics Channels and Data
- 6 Results
- Conclusion and Outlook

Acknowledgement

Many thanks to Dr. Y. Liang for the explaination of high energy physics and particle detectors.

Many thanks to Dr. M. Kunze for importance ranking.

Many thanks for your attention!