The GSI <u>UNI</u>versal <u>Linear</u> <u>AC</u>celerator

General HSI-Upgrade Guideline

1. Back to 2016-HSI-performance

2. Meeting FAIR-requirements

General HSI-Upgrade Guideline

U²⁸⁺-beam current

HSI beam emittance

Pushing the limits for uranium beam operation

- Ion Source: Applying a multi-aperture (7-hole) extraction system at the VARIS ion source → Increased U⁴⁺intensity and improved primary beam brilliance (Terminal West + PRIDE => 20emA, U⁴⁺, 250 mm·mrad)
- Low Energy Beam Transport: Improved LEBT-performance and RFQ-Matching using high brilliance Uranium beam from the VARIS → 75% RFQ-Transmission (I_{out} = 15 emA) (PRIDE)
- RFQ: RF optimization by adjusting plunger positions at the HSI RFQ tank and extensive rf-conditioning → Reduction of forwarded rf-power, yielding for reliable high-current uranium beam operation (Revised electrode design with trapezoidal shape)
- MEBT: Optimizing the beam transport between RFQ and IH DTL by increasing the transverse and longitudinal focusing strength (3%) → Reduction of beam loss, stable high current operation.(Revised design with improved QD (enlarged aperture, higher field strength and new SL-electrode design)
- 1.4 MeV/u-Transport Line: and gas stripper: Adapting the quadrupole channel (matching the gas stripper) → 90% beam transmission, U⁴⁺ beam current of 7.6 emA available for heavy ion stripping. (H₂-gas stripper implementation => 15 emA, U²⁸⁺, 0.5 mm·mrad (hor.))
- UNILAC-high current beam diagnostics (non destructive): Beam transmission (MAPS), beam position (phase probe pickups), beam profile monitors (BIF) – Bunch Shape Monitor (transfer line)
- Regular beam development program: Ramp up UNILAC to 10 emA, U²⁸⁺ at sufficient beam brilliance !
- Reliable high current beam operation!

W. Barth, UNILAC_Upgrade, Machine Meeting, 13.10.2020

HSI-RFQ-Upgrade (2019)

- New Quadrupole Quartett (2017/18) with thin walled beam tube (2019)
- HSI-RFQ: New Electrodes (2019) installed (2018: Rf-level limited to max. 74% of Design)

R&D plan for a high intensity heavy ion RFQ with high reliability that meets the FAIR requirements?

General HSI-(RFQ) Guideline

- Back to 2016-performance (1)
- Meeting FAIR-requirements (2)

Schedule

- 2019: Exchange of RFQ-electrodes 🌢
- 2020: Advanced Rf-conditioning
- 2020: U⁴⁺-operation
- 2022: Exchange of LEBT-QQ (1)
- ≥2023: Improved RFQ-electrode design (2)
 - lower RF-voltage (RF-power)
 - higher acceleration efficiency

M. Vossberg, R. Brodhage, M. Kaiser, F. Maimone, W. Vinzenz, S. Yaramyshev, GSI, Darmstadt, Germany, DESIGN STUDIES FOR THE PROTON-LINAC RFQ FOR FAIR, IPAC'15 (2015)

Status of High Current Heavy Ion Beam Performance

Further UNILAC-Upgrade

FAIR: 15 mA U²⁸⁺ at 11.4 MeV/u;

Required at RFQ entrance: 20 mA U⁴⁺ (inside 250 μ m)

Low Z-gas stripping witth improved heavy ion stripping efficiency: +65% => 15 mA U²⁸⁺ (inside 1 μ m)

TecNote "Further steps towards realization of the <u>PRe</u> Injector <u>DE</u>dicated for Uranium operation (PRIDE)" I

A. Adonin, W. Barth, R. Hollinger, H. Vormann, S. Yaramyshev (07.10.2020)

Two step approach to realize PRIDE

- A. Upgrade of existing matching line to RFQ (2023)
- B. Terminal West and beam transport to existing matching line (2026)
- The general beamline layout is fixed
 - Terminal West– Quadrupole Quartet (QQ new) with large aperture iris aperture Quadrupole Triplet – switching magnet – Quadrupole Quartet (QQ old) – HSI-RFQ (Matching In).

- Step A

 Replacement of new QQ (in front of RFQ) by old QQ in order to obtain high transmission (with optimal beam brilliance) through entire HSI by providing proper RFQ-matching for heavy ion beams.

References: <u>https://www.gsi.de/fileadmin/Beschleunigerbetrieb/Dokumente/UNILAC Report ACC Exp 05 06 2020.pdf</u>, S. Yaramyshev et al., ADVANCED BEAM MATCHING TO A HIGH CURRENT RFQ, proc. of LINAC14, Geneva, Switzerland (2014): <u>http://accelconf.web.cern.ch/LINAC2014/papers/tupp059.pdf</u>

- Power supplies for old QQ are kept at already installed position.
- Replacement of switching magnet (UH1MU2) with enlarged vertical aperture (total inner height of 77 mm) as a start value of an iterative optimization process of beam line designer with NCM- and EPS-department.

TecNote "Further steps towards realization of the <u>PRe</u> Injector <u>DE</u>dicated for Uranium operation (PRIDE)" II

A. Adonin, W. Barth, R. Hollinger, H. Vormann, S. Yaramyshev (07.10.2020)

Step B

- The new QQ, enlarged for the original design aperture of 150 mm, has to be installed directly behind Terminal West.
- For new QQ the four existing new power supplies (in d.c. mode) fulfill all requirements to catch the beam from ion source.
- o Power supply for new QQ are kept at already installed position in BH1 basement.
- The distance from Terminal West to switching magnet has to be optimized further providing for proper beam dynamics.

Resource issues and further time schedule

- Replacement of QQ together with installation of new switching magnet (shutdown 2022/23).
- Design, specification and ordering of new switching magnet will start end of 2020, to allow for installation of switching magnet in shutdown 2022/23.

PRIDE-upgrade follows the general HSI-upgrade guideline

- o Back to 2016-HSI-performance (Step A)
- Meeting FAIR-requirements (Step B)

References: W. Barth et al., High brilliance uranium beams for the GSI FAIR, Phys. Rev. ST Accel. Beams 20, 050101 (2017)

Attachments

W. Barth, UNILAC_Upgrade, Machine Meeting, 13.10.2020

UNILAC-Design Beam Parameters

Commissioning of the 1.4 MeV/u High Current Heavy Ion Linac at GSI, Winfried Barth

DESIGN BEAM PARAMETERS AT UNILAC AND SIS INJECTION					
Requirements to obtain the SIS space charge limit (a twentyfold multiturn injection is supposed)					FAIR
	HSI entrance	HSI exit	Alvarez entrance	SIS injection	SIS injection
ION SPECIES	238U4+	$^{238}U^{4+}$	238U28+	²³⁸ U ⁷³⁺	²³⁸ U ²⁸⁺
El. Current [mA]	16.5	15	12.5	4.6	15
Part. per 100µs pulse	2.6·10 ¹²	2.3·10 ¹²	2.8.1011	4.2·10 ¹⁰	3.5-1011
Energy [MeV/u]	0.0022	1.4	1.4	11.4	11.4
ΔW/W	-	±4·10 ⁻³	±2·10 ⁻³	±2·10 ⁻³	±2·10 ⁻³
ε _{n.x.} [mm mrad]	0.3	0.5	0.75	0.8	0.8-1.1
ε _{n.y.} [mm <u>mrad]</u>	0.3	0.5	0.75	2.5	"
LINAC 2000					

Comparison of HSI-Transmission

