Status of STT Developments in Jülich

Peter Wintz

and G. Kemmerling, H. Kleines, V. Kozlov, P. Kulessa, H. Ohm, S. Orfanitski, R. Nellen, N. Paul, K. Pysz, J. Ritman, M. Roeder, V. Serdyuk, P. Wüstner

December 3, 2010

PANDA STT Group Meeting

Overview

PANDA STT

- Design update
- Prototype construction
- Readout options (\rightarrow Krzystof)
- Installed STT system at COSY-TOF
 - Operation status
 - Calibration and resolution results

1200mm

820mm

STT Concept

- 4580 Straw tubes
- Al-mylar: d=27µm, Ø=10mm, L=1200mm
- Close-packed with <20µm gaps
- 21-27 planar layers in 6 hexagonal sectors
- 8 layers skewed (3D reconstruction)
- Time readout (isochrones)
- Amplitude readout optional (dE/dx)
- σ_{rφ} ~ 150 μm, σ_z ~ 2.9 mm
- σ_p ~ 1% at B=2Tesla

STT Design

Low mass, $X/X_0 \sim 1\%$

- 11.5 kg Straw tubes (4580× 2.5g)
 - Close-packed layers, pressurized p=2bar
 - Self-supporting strong wire & tube stretching (220kg/3.5t)
- 9 kg Mechanical frame

STT Layout

21-27 layers, from inner to outer radius

- 8 Axial layers
- 4 Skewed double-layers (±2.89°)
- 5 Axial layers
- 6 Axial filling layers
- 85% of cylindrical volume filled by straws
- 2× 2050 straws with 1200mm length
- 2× 240 skewed straws with diff. length
- 4580 straws in total

Straw Modules

Quad-layer module

- 4 close-packed layers, glued together
- Increased rigidity compared to double-layer
- Even number of straws and gas lines per module
- Replacement of single, faulty straws possible
- Module of 2× double-layers (±2.89°) for skewed orientation

Exchange of single straws in quad-layer module possible

Prototype Construction

Full-scale PANDA-STT prototype:

- Develop assembly technique
- Integrated quad-layer modules with gas manifolds and electric coupling
- Assembly complete hexagon sector on the table
- Insert sector into STT frame structure
- Plug on gas and electric connectors

Small-scale prototype:

- 128 tubes with 1500mm length
- Readout development (→ Krzystof)

Testsystem: STT at COSY-TOF

2704 straw tubes

- AI-mylar: d=32µm, Ø=10mm, L=1050mm
- 13 planar double-layers
- Skewed by i×60° for 3D reconstr.
- Ar/CO₂ (20%) at p=1.2bar
- Time readout: discr. + TDC
- Operated in vacuum

Testsystem for PANDA-STT

- Same straw design, materials, geometry of planar d-layers
- Similar straw calibration method

COSY-TOF Apparatus

p-Beam on target cell inside large Time-of-Flight vacuum vessel, equipped with scintillator hodoscopes and Straw Tube Tracker

Operation Status

- 1st beam time in Aug/Sep 2010: $\vec{p}p \rightarrow pK\Lambda$ at 2.95 GeV/c
- 2 years in surrounding vacuum now
- Gas leakage on permeation level
- No HV problems in vacuum (p_{vac} <10⁻³ mbar)

Detector settings

- Ar/CO₂ (20%), p=1.25bar (abs.)
- HV=1840V
- Max drift times ~150ns (PANDA-STT: ~250ns, p=2bar)
- Non-linear isochrone radius drift time relation

Calibration Method

Method:

- Time offsets adjusted (4 RO crates, synchronised)
- Isochrone calibration by integration of drift time spectrum

•
$$\frac{N}{R} = \frac{dN(t)}{dR(t)} \rightarrow R_{iso}(t) = \frac{\sum_{i=0}^{n} N_i}{N} \times (R_a - R_0) + R_0$$

$$\mathbf{R}_{iso}(t) = \sum_{i=0}^{4} \mathbf{P}_i \times t^i$$

- Global parametrisation for all straws
- Track reconstruction $(\chi^2$ -fit to isochr.)
- Adjustment of straw (layer) positions
- Iteration of calibration

(→ Ph.D. thesis by S. Costanza)

Spatial Resolution

Single (raw) tracks, no event cuts:

- ≥6 hits, (mean 8.3, max 10 hits)
- Residuals < 800 μ m (~5 σ) \rightarrow refit
- Loose target cut (~10σ)
- ±52° max track angle (σ_{θ} ~21°)

Results (preliminary!):

- Residuals: $\sigma_r = 142 \mu m$ (mean)
- 132-154µm variation for diff straws
- 260-90µm variation over straw radius
- No correction of $\sigma_{\delta e}$, σ_{MS} , $\sigma_{\Delta t/L}$, σ_{tof} , ...
- Still few ×10µm syst. errors in param. incl.

Peter Wintz

Tracking Results

- STT included in COSY-TOF analysis
- Reconstruction results of $pp \rightarrow pp$ events
 - $\sigma \sim 110 \mu m$ vertex resolution (260 μm FWHM)
 - 25 cm distance target STT
 - 4.5 MeV/c missing energy resolution
- $pp \rightarrow pK\Lambda$ event reconstruction with

delayed decay $\Lambda \rightarrow p\pi^{-}$

u/v/w projection planes of STT

Summary

- STT design & prototype construction developing, number of layers increased, 4580 straws in 21-27 layers
- Resolution σ_r<150µm demonstrated with time readout for large STT system (2700 straws, p=1.2bar abs.)
- Global parametrisation of isochrone radius drift time relation due to precise diameter of pressurized tubes
- Position calibration method benefits from modular design and close-packed layer geometry (<20µm gaps)
- Realistic option: signal amplitude readout for dE/dx, benefits from >20 hits per track