
Detection and reporting

of faults in comunication

between LabVIEW and EPICS

in Cluster Jet control system

Jerzy Tarasiuk

NCBJ - Warsaw and Uni-Warsaw

2020-10-27 NCBJ team, Poland LabVIEW-EPICS error passing page 1

The Cluster-Jet Target control system is to use 2 Compact RIO-s

(short cRIO, RIO = Reconfigurable I/O; now we have one of them)

NI-9039 type, with C-Modules constituting I/O interfaces; the

cRIO has NI Linux Real-Time 6.0 with LabVIEW Real-Time 18.0.0,

and NI Scan Engine (which "enables access to I/O channels by

storing data in a global memory map and updating all values at

a single rate" by NI's words, in fact it also signals errors

in I/O operations - it was tested by removing a C-Module).

The LabVIEW Real-Time includes "EPICS Server I/O Server",

which provides some EPICS Server functionality, but far

from being suitable for our purposes. I presented some of

its disadvantages on PANDA CM 3/2019 (as well as our plan

to use standard EPICS server and NI's EPICS Client only),

some more were told us about by Florian Feldbauer, and

were described by Dirk Zimoch in 2013 on EPICS tech-talk.

Yet another thing (from Florian's dissertation) triggered

a change in our plans: SNL (State Notation Language) and

EPICS Sequencer - we planned designing something similar

in the LabVIEW, but now we can use the original.

2020-10-27 NCBJ team, Poland LabVIEW-EPICS error passing page 2

Therefore we are making the following software scheme:

(a picture)

2020-10-27 NCBJ team, Poland LabVIEW-EPICS error passing page 3

Compared to the previous plan it has added the EPICS Sequencer,

and a shared memory interface between LabVIEW program and the

Sequencer. In order to propagate errors from LabVIEW to EPICS

need store there not only the data, but also a kind of status.

To detect a communication failure the status must contain

a positive "OK" information, not an "Error" information only,

as in the latter case "OK" is the same as "connection lost".

Our idea is: the LabVIEW side stores 0 as status value after

storing a valid data; the Sequencer stores a non-0 after it

processed the set of data and waits for another one. Further,

the Sequencer may use the value to count the time it waits.

This applies to the global communication status; every value

has its own status, and before setting the global status to 0

the LabVIEW side sets these individual statuses: if a data is

OK, it stores 0; on an error, it adds the global status value

- this way any data item status tells how long the Sequencer

was waiting for the data since it received some; 0 = "fresh".

2020-10-27 NCBJ team, Poland LabVIEW-EPICS error passing page 4

For writing a data from the Sequencer to the hardware there

is a command/status for every data item: a non-0 requests

the data to be written, a 0 tell the writing was done.

The Sequencer examines these statuses and if none of these

shows an unacceptable delay it sends some value to a "timeout"

record on the EPICS server (currently, it is 12 (seconds) in

our stub program); it is a "calc" type record scanned every

second, which subtracts 1 from its value, and has LOW=0 -

when the value reaches 0, it triggers a warning.

Also, the Sequencer uses fresh data only to send any data to

the EPICS - if it isn't fresh, its EPICS timestamp remains

unchanged and it shows there is a problem with a data item.

Yet another thing is planned (and a space for it is reserved

in the shared memory): both LabVIEW and Sequencer are to put

current time (each has a separate variable for it) and they

may compare these times - a significant difference will mean

a stall of one of these programs and the other can restart it.

2020-10-27 NCBJ team, Poland LabVIEW-EPICS error passing page 5

The LabVIEW part can handle Analog Input and Output (AI and AO)

signals (data type = Double or 8-byte Real), and Digital Input

and Output (DI and DO, data type = Boolean stored in byte);

the shared memory contains 6 arrays for the data (output data

needs separate arrays for output and for input, as it can be

read back to the Sequencer); and it is accomplished by 6 status

arrays (control/status for output data). If there are more

modules providing the same kind of signals (currently we have

2 DO modules), they are put in the same array, and the order

of the data is determined by a configuration file telling also

setup values for some modules (NI-9205 has a lot of settings).

Besides these arrays, the communication uses two variables,

named d_rd_f and d_wr_f, for synchronization (both programs

are doing their job in their own pace - LabVIEW synchronized

with the Scan Engine), and the shared memory contains also

array offsets (12 total) and sizes (4).

On the next page there is a schema of their coordination.

2020-10-27 NCBJ team, Poland LabVIEW-EPICS error passing page 6

(a picture)

2020-10-27 NCBJ team, Poland LabVIEW-EPICS error passing page 7

The rules for the synchronization are:

- d_rd_f rules read (hardware -> Sequencer) transfers;

- d_wr_f rules write (Sequencer -> hardware) transfers;

- the Sequencer may only increment d_rd_f/d_wr_f values;

- the LabVIEW part may only clear these values;

- when d_rd_f/d_wr_f is 0, the Sequencer has access to all

 data and command/status elements in the shared memory

 for the respective direction; when finished, it should

 set non-0 there to allow access for the LabVIEW part;

- when d_rd_f/d_wr_f is non-0, the LabVIEW part has the

 access; it should set 0 there when it finishes;

- a sum of the d_rd_f/d_wr_f and an individual data item

 status tells how old data is.

The Sequencer has access to the status information and it

is not to use any old data, so an I/O error detected by

the LabVIEW part results in old timestamp in EPICS; also,

when all is functional, it updates the "timeout" record -

so stopping the Sequencer will trigger a warning/alarm.

2020-10-27 NCBJ team, Poland LabVIEW-EPICS error passing page 8

An I/O error may be caused by stopping the LabVIEW process,

or by pulling out a C-Module - both were tested and they

resulted in a warning and later alarm in the EPICS.

The softIocPVA used was from EPICS base version 7.0.4;

the Sequencer was of version 2.2.7; an example Sequencer

program generated by makeBaseApp.pl was adapted for the purpose

of these tests (everything except the SNL program was removed,

a shared memory interface was added, as well as forwarding to

EPICS all the input data which was read without an error) -

it is a minimal stub for testing the error forwarding.

Besides analog and digital data, the shared memory can forward

data from/to serial ports, using circular buffers; the LabVIEW

part has an advantage of configuration file (in Windows .INI

format) support, detection and configuration of serial ports.

2020-10-27 NCBJ team, Poland LabVIEW-EPICS error passing page 9

Limitations: we cannot test results of FPGA malfunction, as

the LabVIEW seems to have no command or function to simulate

it, althought pulling out a C-Module has shown that some error

propagation from the FPGA to LabVIEW RT exists.

If stopping of the FPGA (e.g. due to a clock failure) does not

cause an error to be returned by the Scanned Variable Read or

Scanned Variable Write function, nor it causes a detectable

malfunction of scan synchronization, such an error stil can be

detected by comparing consecutive data values from an analog

input - due to noise, they usually vary, showing the data is

really read from a hardware, not from a saved old value.

However, detecting a broken wire between the C-Module and the

signal source is not possible by a purely software method.

And, from the EPICS side, there is needed a client monitoring

a variable that would show a loss of communication. More, some

server variable must contain a kind of clock, and be monitored

to detect possible loss of network communication.

2020-10-27 NCBJ team, Poland LabVIEW-EPICS error passing page 10

THANK YOU FOR YOUR ATTENTION

