

Dr. Petr Shatunov

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Online 10, November, 2020

Status: TCR1

- Dipoles, Wide quads, Correctors, Sextupoles, Power converters, Beam observation follow the procedure of similar CR elements. Exact schedule is in discussion.
- Vacuum chambers waiting for specs.
- TCR1QS06 special type quad, developed and there is spec.
- TCR1DX6, TCR1KH3, TCR1KV4 knot still in development. Looking for a good solution.

Septum Magnets Further Steps (May 2020)

Injection:

- Spec. Change request \rightarrow submitted
- Update for detailed injection parameters → ready for submission
- CDR \rightarrow right after Specs change. Everything is ready.
- FDR \rightarrow right after CDR. Blueprints are ready.
- Vacuum chambers and tests → August-September 2020
- Production of pre-series and tests \rightarrow 2021

Extraction:

- Spec. Change request $\ensuremath{\rightarrow}$ to be submitted after the workshop
- Update for detailed extraction parameters $\ {}_{\rightarrow}$ to be submitted
- Magnetic field calculations → 1-2 Monthes
- Design finalization \rightarrow end of summer.
- CDR \rightarrow Autumn 2020
- FDR \rightarrow As soon as blueprints will be ready.
- Production goal \rightarrow start after the production of ISM pre-series.

Beams Dynamics for Injection/Extraction

- Scheme for orbit steerers were updated for Injection
- Extraction with two-part extraction septum was recalculated
- The paper was made and published in EDMS.

Injection Septum Magnet Status

- Magnetic field quality discussion done
- Spec. Change request done
- Ceramic vacuum chamber procurement done. Testing is on the way.
- Iron procurement done
- Copper procurement done
- Blueprints in the workshop
- The stamp is ready for production. Waiting for the order.
- Testing approach is agreed.
- CDR & FDR → still in preparation
- Production and tests \rightarrow late 2021

Injection Septum Magnet Parts

Ceramic vac. chambers

PS for Dubna Booster-Nuclotron

- Magnetic field calculations finished
- Development finished
- Blueprints are in the workshop
- Laser cutting
- CDR & FDR → still in preparation
- Production and tests \rightarrow early 2022

Number of magnets	2
Magnetic field	1.2T
Radius of curvature	11070mm
Effective legth	687.35mm
Final orbit deviation angle	7.513°
Yoke length	640mm
Voltage	2.5kV
Pulse length	3 msec
Gap	65 mm

Extraction Septum Status

Magnetic field quality better than $\pm 5 \cdot 10^{-3}$

Injection simulations

Helmut Weick → This Workshop. Wednesday 10.00

Further Steps

Injection:

- CDR \rightarrow In work. Coming soon.
- FDR \rightarrow right after CDR.
- Production of stamp → Spring 2021
- Stamping → Spring Summer 2021
- Assembling → Fall 2021
- Testing and possible additional work \rightarrow End of 2021

Extraction:

- Spec. Change request
- Production preparations in the workshop
- Testing of laser cutting
- CDR → Right after ISM CDR
- FDR → Right after ISM FDR
- Production goal \rightarrow early 2022

Thank you!

Injection Septum: Magnetic Field Simulations

Precision of winding is 0.5mm. Demand for profile accuracy 0.1mm

Extraction Septum: Magnetic Field Simulations

Magnetic Field Quality Requirements

Initial distribution of 2000 particles

Distribution after 3 Septums with $\triangle B/B=0.02$ at radius 60mm

Losses: 94 particles exceeding horizontal amplitude 115 particles exceeding vertical amplitude ~10% off losses

Paper published in EDMS by Ivan Koop in 02.2020

Magnetic Field Quality Requirements

Assembling: Parts order

Assembling: Yoke is finished

Vacuum chamber

Vacuum chamber

