Resonance Photoproduction of Pionic Atoms @

Joint THEIA-STRONG2020 and JAEA/Mainz REIMEI Web-Seminar, February 17, 2020

Victor V. Flambaum

Based on: V. V. Flambaum, J. Jin, and D. Budker, arXiv:2010.06912

> Production rates expected at GF

Pionic atoms

- > A negative pion orbiting the nucleus
- hydrogen-like system
- $m_{\pi} c^2 \approx 140 \text{ MeV} \approx 270 m_e c^2$

Spin =0. Critical charge for point nucleus Z=68! 1s orbital radius is close to nuclear radius for Z=40

- Strong interaction effects
- pion absorption width broadening
- energy shift vs. Coulomb

Pionic atoms

> Physics Motivation

- GF photons bound pions
 - E_{γ} , Γ_{ph} vs. Γ_{tot} , flux (tunable energy, narrow band, high flux)
- deeply bound pionic atoms
- strong interaction, nuclear structure, nuclear forces forming the structure...

Methods for producing pionic atoms

> Stopping free π^- in a pion beam

- produce ~10⁵ pionic atoms per sec
- X-ray cascade between "circular" states
- deeply bound states cannot be produced
- population of higher ns states is suppressed

5

Methods for producing pionic atoms

> Our proposal

• resonance photoproduction of bound pions from the nucleus $\gamma + n \rightarrow p + \pi^-$, $\gamma + {}^A_{Z_i} X \rightarrow ({}^A_Z X' + \pi^-)_{nl}$, $Z = Z_i + 1$

- $E_{\gamma} \approx 140 \text{ MeV}$ (final nucleus in its ground state)
- Γ_{ph} vs. Γ_{tot}

Methods for producing pionic atoms

- > Total width of *ns* pionic states
- width: pion absorption, X-ray radiation, Auger electron emission
- fitting 1s width data

 $\frac{16 Z^{4}}{Z^{3} + 70 Z^{2} - 950 Z + 11000} = \frac{\Gamma_{tot}(Z, 1)}{\Gamma_{tot}(Z, n) \approx \Gamma_{tot}(Z, 1) \frac{1}{n^{3}}}$ for pionic atoms with 1s orbital radius larger than nuclear radius

E. Friedman and A. Gal, Physics Reports 452, 89 (2007); J. Konijn, et al, Nuclear Physics A 519, 773 (1990) 7

Cross-section for monochromatic photons

- $\sigma_0 = 2\pi \frac{2I_f + 1}{2I_i + 1} \left(\frac{\hbar c}{E_{\gamma}}\right)^2 \frac{\Gamma_{\gamma}}{\Gamma_{tot}}$
- $E_{\gamma} \approx 140 \text{ MeV}$
- Γ_{tot} : dominated by pion absorption
- Γ_{γ} : radiative capture of the pion by nuclei, with <u>final nuclei in the ground state</u>
- $\frac{\Gamma_{\gamma}}{\Gamma_{tot}}$: α ($\sigma_0 \sim 1$ mb, valid for light nuclei)

2% (radiative capture probability, upper estimate of $\frac{\Gamma_{\gamma}}{\Gamma_{tot}}$)

> bound pion vs. free pion

- Integrated cross-section: $\int \sigma(E) dE = \frac{\pi}{2} \sigma_0 \Gamma_{tot}$ (bound pion)
- $\int \sigma(E)dE = (Z\alpha)^2 mc^2 K \sigma_p$, $K = 1 \exp(-2\pi Z\alpha mc/p)$ (near threshold)

$\succ \sigma_{p=0}$

light nuc

• measurements of $\sigma_{p=0}$ (using quasi-monochromatic photons) are limited.

clei:	$Z^{A}X^{A}X'_{g.s.}$	$\sigma_{p=0}(\mu \mathbf{b})$	$\sigma_0 (\mu b)$	$[10^3 \times \Gamma_{\gamma} / \Gamma_{tot}]$	rate (s^{-1})
	4 ⁷ Li ⁷ Be _{g.s.}	8	1200	9.05	6.0×10^{9}
	6 ¹¹ B ¹¹ C _{g.s.}	4	260	1.90	2.7×10^{9}
	7 ¹² C ¹² N _{g.s.}	4	200	1.50	2.6×10^{9}
	8 ¹⁴ N ¹⁴ O _{g.s.}	0.2	8	0.057	1.3×10^{8}

• heavy nuclei: $\sigma_{p=0} \sim 1 \mu b$

C. Tzara, Nuclear Physics B 18, 246 (1970); M. Singham and F. Tabakin, Annals of Physics 135, 71 (1981)

9

$$\succ \sigma_{p=0}$$

yields for (γ, π⁻) are A-independent for targets with A ≥ 40 (A ≈ 2Z)
 γ +¹⁹⁷Au → ¹⁹⁷Hg_{g,s} + π⁻, σ_{p=0}~1μb

 $\sigma_{p=0} \sim 1 \mu b$ for nuclei with $9 \leq Z \leq 92$ (rough estimate)

> bound pion vs. free pion

 $\sigma_p \Longrightarrow \Gamma_{\gamma} / \Gamma_{tot}, \sigma_0$, production rates

light nuclei:

Z	AX	$^{A}\mathbf{X}_{g.s.}^{\prime}$	$\sigma_{p=0}(\mu \mathbf{b})$	$\sigma_0(\mu{ m b})$	$[10^3 \times \Gamma_{\gamma} / \Gamma_{tot}]$	rate (s^{-1})
4	⁷ Li	$^{7}\mathrm{Be}_{g.s.}$	8	1200	9.05	6.0×10^{9}
6	^{11}B	${}^{11}C_{g.s.}$	4	260	1.90	2.7×10^{9}
7	^{12}C	${}^{12}N_{g.s.}$	4	200	1.50	2.6×10^{9}
8	¹⁴ N	$^{14}O_{g.s.}$	0.2	8	0.057	1.3×10^{8}

$Z \ge 9$: $\sigma_p \approx 1 \mu b \Longrightarrow \Gamma_{\gamma} / \Gamma_{tot} \approx 0.25 \times 10^{-3}$

 \succ Free π^- vs. π^0

- Coulomb interaction \implies Sommerfeld factor $\sigma_p(\pi^-)/\sigma_p(\pi^0) \sim \frac{2\pi f}{1-\exp(-2\pi f)}, f = Z\alpha mc/p$
- Coherent production of π^0

$$\sigma_p(\pi^-)/\sigma_p(\pi^0) \approx \frac{A-Z}{A^2} \frac{2\pi f}{1-\exp(-2\pi f)} \approx \frac{1}{4Z} \frac{2\pi f}{1-\exp(-2\pi f)}$$

B. Krusche, *et al*, Physics Letters B 526, 287 (2002); B. Krusche, Eur. Phys. J. Special Topics 198, 199 (2011) 12

- Background photon attenuation
- For 140 MeV photon:

pair production & Compton scattering

•
$$\sigma_{tot}(Z_i) \approx \sigma_{pp} + \sigma_{scat} \approx 0.6 \times 10^{-26} (Z_i^2 + Z_i) \text{ cm}^2 >> \sigma_0$$

Production rates at the GF

> GF photons: nearly uniformly distributed up to the maximal energy

► Proper collimation: suppress the background $j = 10^{17} \text{ph/s} \xrightarrow{\text{collimation}} j_{eff} = j \frac{\Gamma_{ph}}{E_{v}}$

 $\succ \Gamma_{ph}$: $\Gamma_{ph} = \Gamma_{tot}$ or $\Gamma_{ph} = E_{1s}$ (1s binding energy)

$$\succ \sigma_{eff}(Z,n), \ \sigma(E) = \sigma_0 \frac{(\Gamma_{tot}/2)^2}{(E-E_{\gamma})^2 + (\Gamma_{tot}/2)^2}$$
$$\sigma_{eff}(Z,n) \approx \sigma_0 \frac{\Gamma_{tot}}{\Gamma_{ph}}$$

Production rates at the GF

> Maximal production rates

$$p(Z,n) = j_{eff} \frac{\sigma_{eff}(Z,n)}{\sigma_{tot}(Z_i)} = 5.6 \times 10^8 \frac{\sigma_{p=0}(Z)/1\mu b}{n^3} \,\mathrm{s}^{-1}$$

• light nuclei:

\overline{Z}	^А Х	$^{A}\mathrm{X}_{g.s.}^{\prime}$	$\sigma_{p=0}(\mu \mathbf{b})$	$\sigma_0(\mu{ m b})$	$[10^3 \times \Gamma_{\gamma} / \Gamma_{tot}]$	rate (s^{-1})
4	7 Li	$^{7}\mathrm{Be}_{g.s.}$	8	1200	9.05	6.0×10^{9}
6	^{11}B	${}^{11}C_{g.s.}$	4	260	1.90	2.7×10^{9}
7	^{12}C	${}^{12}N_{g.s.}$	4	200	1.50	2.6×10^{9}
8	¹⁴ N	¹⁴ O _{g.s.}	0.2	8	0.057	1.3×10^{8}

• $Z \ge 9$: $\sigma_p \approx 1 \mu b \Longrightarrow p(Z, 1) \approx 5.6 \times 10^8 s^{-1}$

Kaonic atoms

Strangeness conservation $\implies \gamma + n \rightarrow p + K^{-}$ ($K^{-}: \bar{u}s.$ Require $\bar{s}.$)

> Possible methods

• $\gamma \to K^- + K^+ \implies \gamma + {}^A_Z X \to ({}^A_Z X' + K^-)_{nl} + K^+$ threshold energy, $E_{\gamma} \approx 1$ GeV, beyond current scope of the GF nonresonance (free K^+)

> High production rates

• light nuclei:

\overline{Z}	^А Х	$^{A}\mathrm{X}_{g.s.}^{\prime}$	$\sigma_{p=0}(\mu b)$	$\sigma_0 (\mu { m b})$	$[10^3 \times \Gamma_{\gamma} / \Gamma_{tot}]$	rate (s^{-1})
4	7 Li	$^{7}\mathrm{Be}_{g.s.}$	8	1200	9.05	6.0×10^{9}
6	¹¹ B	${}^{11}C_{g.s.}$	4	260	1.90	2.7×10^{9}
7	^{12}C	$^{12}N_{g.s.}$	4	200	1.50	2.6×10^{9}
8	^{14}N	¹⁴ O _{g.s.}	0.2	8	0.057	1.3×10^{8}

> Deeply bound states

> Higher *ns* states and *nl* states

• $Z \ge 9$: $\sigma_p \approx 1 \mu b \Longrightarrow p(Z, 1) \approx 5.6 \times 10^8 s^{-1}$

Thank you!