PANDA MVD Optimisation

Lars Schmitt, GSI

MVD Session at PANDA CM XXXV, GSI, Nov 29 2010

A Look at Belle-II

MVD Material Budget

Possible Optimisations

Conclusions

Belle Silicon Vertex Detector (SVD): 4 layers DSSD → Belle II: 4 DSSD (SVD)+ 2 pixel layers (PXD)

-: also Central Driftchamber (CDC), Calorimeters, Particle ID, Muon

halbleiterlabor

The DEPFET Belle-II ladder

er
2
R-₫)
HZ
2 F

mpi halbleiterlabor

Total Material Budget within the Sensitive Volume

- sensitive area of the first layer ladder:
- support frame:
- Switcher-Sensor Interconnect:
- Cu Layer
- Switcher dimensions:
- Number of Switchers:
- Material reduction by frame perforation:

1.25x9.0 cm² (1.5x9.0 incl. frame), 75 μ m thin 0.1+0.2 cm, 420 μ m Gold stud bumps, one bump/connection, Φ =48 μ m t=3 μ m, 50% coverage in acceptance 0.15x0.36 cm² 12 (32x2 channels per chip – gate and clear) 1/3

ightarrow 0.19 %X $_0$ in total

Silicon contribution (0.15%) experimentally confirmed

IEEE NSS 2010, Knoxville, TN

PANDA MVD Material Budget

MVD Material Budget

Comparison of Material Budget

Belle-II Vertex Detector

- 2 pixel and 4 strip layers
- Pixel layer: 0.19 % X/X₀
- Strip layer: 0.57 % X/X₀
- Total: 2.66 X/X₀
- In a PANDA-like configuration: 1.52 % X/X₀

PANDA MVD

Barrel: 2 pixel + 2 strip layers

panda

- Pixel layer: 1.19 % X/X₀
- Strip layer: 0.96 % X/X₀
- Total: 4.3 X/X₀
 But from the previous picture more like >6 X/X₀

ALICE Vertex Detector

Detector	Pixel		Drift		Strip	
	Inner	Outer	Inner	Outer	Inner	Outer
Layer	1.14	1.14	1.13	1.26	0.83	0.86
Thermal shield/Support		0.52	0.25		0.53	
Total	7.18 (7.26 including Air)					

MVD Material Budget

L. Schmitt, GSI

Possible Optimisation

Two roads for a lower material budget

- Take a completely different approach, e.g. DEPFET
- Modernize presently chosen approach

Items for optimisation (these are just examples)

- Keeping the ToPiX design try to go for 3D integration:
 - Further thinning of sensor
 - Wafer-to-wafer bonding with ToPiX
 - Possibly introduce a further transfer layer
- Different cooling strategies:
 - CO₂ cooling (liquid or 2-phase)
 - Silicon oxide support providing heat transfer
- Optimise cable routing
 - Avoid double layering
 - Consider forward routing for disks

Conclusions

- Comparison to competitors which are even ready before us:
 - Resolution and material budget are the critical figures of merit
 - Referees of our TDR may judge our design baseline as too conservative
- Which impact would a factor 2 less material have?
 - Electromagnetic calorimetry
 - Vertex and track resolution
- We should re-evaluate some of our assumptions
 - Cable routing
 - Beam pipe design
 - Cooling and support

Conclusions

Final Questions

Questions we have to ask ourselves before further steps:

- How much time would we need for further optimisations?
- Would we need additional collaborators?
- Whom should we approach, from whom can we learn?
- Can we afford not to do any further optimisation?

