

Daniela Calvo¹, Richard Wheadon¹

1- INFN - Torino

in collaboration with FBK - Trento

Thinning process on the PANDA pixel wafers

PANDA pixel wafer: first sensor prototype

Some calculations

	Barrel 1	Barrel 2	Disk 1	Disk 2	Disk 3	Disk 4	Disk 5	Disk 6	Total
Module 2	6		6	6					18
Module 4			2	2	6	6	6	6	28
Module 5	8				12	12	12	12	56
Module 6		50			4	4	4	4	66
Total number	14	50	8	8	22	22	22	22	168

	1 wafer	33 wafers
Single chip	1	33
Module 2	1	33
Module 4	1	33
Module 5	2	66
Module 6	2	66

Wafer features

Wafer parameter	Epi-75, low resistivity	Epi-50	Epi-75	Epi-100
substrate				
Diameter [mm]	100 ± 0.05	100 ± 0.05	100 ± 0.05	100 ± 0.05
Orientation	<100>	<100>	<100>	<100>
Conductivity type/dopant	n⁺/Sb	n⁺/Sb	n⁺/Sb	n⁺/Sb
Thickness [µm]	525 ± 25	525 ± 25	525 ± 25	525 ± 25
Resistivity [ohm.cm]	0.008 ÷ 0.02	0.008 ÷ 0.02	0.008 ÷ 0.02	0.008 ÷ 0.02
Epitaxial layer				
Conductivity type/dopant	n/P	n/P	n/P	n/P
Epitaxial layer thickness [µm]	73.67 ÷ 75.90	49.35 ÷ 50.39	73.83 ÷ 75.42	99.34 ÷ 100.38
Radial thickness variation	< ± 8%	< ± 5%	< ± 8%	< ± 8%
Resisitvity [ohm.cm]	435 ÷ 460	3100	3200	3610
Radial resistivity variation	< ±10%	< ±10%	< ±10%	< ±10%

Thickness measured by IR reflectance method and resistivity measured by spreading resistance method at ITME

Measured parameters on the patterned wafers

wafer #	Туре	Epi thick (µm)	resistivity [ohmcm]	J (nA)/cm2	Ox thickness (nm)	Qox (cm- 2)	N epi (cm-3)
1	Subs:n+/SB epi:n/P	75	~ 460	3.75	760	6.2E+10	5.7E+12
2	Subs:n+/SB epi:n/P	75	~ 460	5	779	6.4E+10	3.9E+12
3	Subs:n+/SB epi:n/P	100	3610	7.5	760	6.9E+10	7.8E+11
4	Subs:n+/SB epi:n/P	50	3100	2.25	781	6.5E+10	3.5E+11
5	Subs:n+/SB epi:n/P	75	3200	2.5	760	6.6E+10	7.6E+11
6	Subs:n+/SB epi:n/P	50	3100	2.25	783	7.0E+10	3.6E+11
7	Subs:n+/SB epi:n/P	75	3200	2.75	766	6.3E+10	7.1E+11
8	FZ	FZ		1.5	-		
9	FZ	FZ		1.75	-		
10	Subs:n+/SB epi:n/P	75	3200	2.75	784	6.9E+10	3.3E+11
11	FZ	FZ		2	-		
12	Subs:n+/SB epi:n/P	100	3610	3.5	777	7.1E+10	2.8E+11
13	Subs:n+/SB epi:n/P	50	3100	2.5	760	6.4E+10	7.7E+11
14	Subs:n+/SB epi:n/P	75	3200	2.5	781	1.0E+11	3.2E+11
15	Subs:n+/SB epi:n/P	75	~ 460	3.5	760	6.3E+10	6.3E+12
16	Subs:n+/SB epi:n/P	50	3100	3.25	779	6.7E+10	3.1E+11
17	FZ	FZ		1.25	-		

Measurements performed at FBK by Giacomini and Tengattini before thinning process

Thinning and dicing processes plan

Wafer number	Туре	Target thickness [µm]	Sensor + diagnostic structures dicing
1	Epi-75,LR	100	
3	Epi_100	120	
4	Epi-50	100	
7	Epi-75	100	
10	Epi-75	100	Y
12	Epi-100	120	Y
13	Epi-50	100	Y
15	Epi-75,LR	100	Y

First PANDA pixel wafer (June 2010)

Sensor partial view

Pad x bump bonding process

The sensor study for the pixel detector: report on the displacement damage tests

Daniela Calvo¹, Francesca De Mori^{1,2}, Andrea Tengattini ^{1,2}(degree thesis) 1- INFN - Torino 2- UNiversita' di Torino

High resistivity epitaxial silicon devices

Diodes HR, with different Cz substrate

			Group HR (High Resistivity) thin CZ		Group HR (High Resisitivity) thick CZ			
Epi layer name	Epitaxial thickness [µm]	Resistivity [Ω- cm]	Target thickness [µm]	Full depletion voltage [v]	Current density [10-8 A/cm ³]	Target thickness [µm]	Full depletion voltage [v]	Current density [10-8 A/cm ³]
Epi - 50	49.0 ± 0.5	4060	100	4.9	6	200	4.4	6
Epi - 75	73.5 ± 1.0	4570	120	4.9	30	200	5.6	22
Epi -100	98 ± 2	4900	150	5.7	13	200	5.9	42

Test structures obtained from epitaxial patterned wafers using the ALICE pixel mask

Diodes HR, with different Cz substrate

Comparison after a neutron irradiation equivalent to 3 year PANDA lifetime

	Group HR Resistiv thin C	∶(High ⁄ity) CZ	Group HR (High Resisitivity) thick CZ		
Epi layer name	Full depletion voltage [v]	Current density [10 ⁻³ A/cm ³]	Full depletion voltage [v]	Current density [10 ⁻³ A/cm ³]	
Epi - 50	6.7	11.5	6.7	13.2	
Epi - 75	17.8	12.0	15.5	12.5	
Epi -100	29.3	11.6	29.3	12.8	

$$\alpha = (7.6 \pm 0.3) * 10^{-17} \frac{A}{cm} \qquad \alpha = (8.14 \pm 0.21) * 10^{-17} \frac{A}{cm}$$

Different CZ layers don't contribute to the variation of the full depeltion voltage and current density measured after the neutron irradiation

Diodes HR, with different Cz substrate

Middle and lower resistivity epitaxial silicon devices

Diodes MR and LR before neutron irradiation

			Group MR (Middle Resistivity)		Group LR (Low Resisitivity)			
Epi layer name	Epitaxial thickness [µm]	Resistivity [Ω- cm]	Target thickness [µm]	Full depletion voltage [v]	Current density [10 ⁻⁸ A/cm ³]	Target thickness [µm]	Full depletion voltage [v]	Current density [10 ⁻⁸ A/cm ³]
Epi - 50	49.8 ± 0.6	3100	100	4.9	56			
Epi - 75	74.6 ± 0.9	3200	100	8.2	32			
Ері -100	99.8 ± 0.5	3610	120	10.4	35			
Epi -75	74.7 ± 1.2	460				100	42.6	46

Test structures from PANDA pixel wafers

Diodes MR and LR after neutron irradiation

Comparison after a neutron irradiation equivalent to 3 year PANDA lifetime

	Group MR (Middle Resistivity)		Group LR (Low Resisitivity)	
Epi layer name	Full depletion voltage [v]	Current density [10 ⁻³ A/cm ³]	Full depletion voltage [v]	Current density [10 ⁻³ A/cm ³]
Epi - 50	5.6	7.9		
Epi - 75	11.3	8.5		
Epi -100	23.7	6.4		
Epi -75			9.1	9.3

$$\alpha = (4.9 \pm 0.7) * 10^{-17} \frac{A}{cm} \qquad \qquad \alpha = (6.2 \pm 0.8) * 10^{-17} \frac{A}{cm}$$

Annealing phase at 60°C - MR

Annealing time [days]	Full depletion Voltage [V]				
	Epi - 50	Epi - 75	Epi -100		
0	5.6	11.3	23.7		
1	6.1	13.4	32.2		
4	9.1	22.1	52.6		
6	9.9	30.4	56		
8	11.1	31.6	62		
25	15.9	36.6	71		
34	16.6	37.6	77		

Annealing phase at 60°C - LR

Annealing time [days]	Full depletion Voltage [V]
	Epi - 75
0	9.1
1	5.7
4	4.8
6	6.1
8	7.7
25	13.4
34	18

Annealing phase at 60°C - All

More oxygen for the epi wafers, 100 µm thick

50

60

50 mu

Cz substrate

nm

SIMS 25 µm SIMS 50 µm

SIMS 75 µm

70

simulation 25 µm simulation 50 µm simulation 75µm

80

90 100

Daniela Calvo¹, P. De Remigis¹, M. Mignone¹, T. Quagli ^{1,2} (degree thesis), Richard Wheadon¹

- 1- INFN Torino
- 2- Universita' di Torino

Aluminum folded strips

Aluminum folded strips

Aluminum folded strips

Measurement and simulation - Jitter

Measurement and simulation - Height

From LVDS to SLVS standard protocol

LVDS – Low Voltage Differential Signaling (used in the 250 nm CMOS technology @ 2.5 V)

Voltage swing: 400mV on 100 Ω load Common mode: 1250 mV Differential voltage: 800 mV

SLVS – Scalable Low Voltage Signaling (used in the 130 nm CMOS technology @ 1.2 V)

> Voltage swing: 200mV on 100 Ω load Common mode: 200 mV Differential voltage: 400 mV

New tests are planned using the e-link ASIC developed at CERN 4 chips are already in Turin The bording test is under design 1 m long and straight aluminum stips

1 meter long aluminum strip prototype

One end of the strip-cable

Laminated aluminum technology

Daniela Calvo¹ on behalf of Richard Wheadon¹

1- INFN - Torino

Schematic lateral view (not in scale)

The AI tracks are about 100 μm width and the thickness is supposed to be 5-10 $\mu m,$ The SU8 layer (or equivalent material, for dielectric constant) has about the same thickness range