

Update on the Bonn Tracking Station Data Analysis

Simone Bianco

29 XI 2010

- The Bonn Tracking Station:
 - 🗸 Setup
 - ✓ DAQ to PANDAroot Conversion
 - Energy Calibration and Alignment
 - ✓ Scattering Measurements
 - ✓ Setup Optimization
 - ✓ Simulations

The Bonn Tracking Station

╞

Experimental Setup:

4 scintillators (for the trigger 3 out of 4)2 double sided silicon strip detectors4 single sided silicon strip detectors

Available beams:

Protons: 800 MeV/c 2.95 GeV/c Electrons: 1 – 5 GeV

Scattering Volumes:

Carbon foil Carbon Boxes (1 cm, 2 cm)

Software Tools:

Offline alignment Calibration DAQ → pandaroot Analysis tools

DAQ to PANDAroot

Energy Calibration

Realized in two steps:

- ✓ Same charge injected on each of the FE channels
 → to resolve differences in the response
- ✓ MIP hypothesis
 - \rightarrow to set an absolute ADC counts-to-energy-loss scale

Alignment

Iterative procedure to align sensors:

- 1. Measure residual on the 1st sensor
- 2. Correct the position of the 1st sensor
- 3. 2nd sensor... 6th sensor
- 4. Reiterate the whole loop

Scattering Measurements

Scattering – Measured Data

Rotation of One Sensor - Simulations

Rotation of One Sensor - Simulations

Rotation of One Sensor - Simulations

THANKS FOR YOUR ATTENTION

BACKUP SLIDES

2.95 GeV/c protons scattering in 2 cm of C (density 1.69 g/cm3)

2.95 GeV/c protons @ COSY

4 GeV electrons @ DESY

