Th. Gaitanos, A. Chorozidou

τμημα φυσικής

ΑΡΙΣΤΟ ΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗ ΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Gaitanos & Kaskulov, NPA 940 (2015) 181, NPA 899 (2013) 133 Gaitanos & Chorozidou, NPA (2021) in press

- Introduction
- The Non-Linear Derivative (NLD) model
- Basic properties: nuclear EoS & p,p-optical potentials
- Y properties: density & momentum dependent optical potentials

Introduction...

Important for astrophysics

explore EoS far beyond saturation (high p, high t-asymm, $\Lambda/\Sigma/\Xi/\Omega$)

FIN high-density matter (+kinematics) \rightarrow particles with high-momenta p

Not only density dependence, but also momentum dependence (MD) essential

Not only nucleon-EoS, but also hyperon-EoS essential

Not only hyperon-density dependence, but also hyperon-momentum dependence essential

Introduction...

In-medium proton Schrödinger-equivalent Re(U_{opt})

$$U_{\text{opt}} = \frac{E}{m} \Sigma_v - \Sigma_s + \frac{1}{2m} \left(\Sigma_s^2 - \Sigma_v^2 \right)$$

Solutions so far:

→ non-local (Hartree-Fock) contributions to RMF (Hartree) mean-field Weber, Blättel, Cassing et al., Nucl. Phys. A539 (1992) 713

→ first-order derivative coupling terms into the interaction Lagrangian S. Typel, Phys. Rev. C71, 064301 (2005)

THEIA Seminar, 10/02/2021

Introduction...

In-medium hyperon Schrödinger-equivalent Re(U_{opt})

$$U_{\text{opt}} = \frac{E}{m} \Sigma_v - \Sigma_s + \frac{1}{2m} \left(\Sigma_s^2 - \Sigma_v^2 \right)$$

<u>Dirac-phenomenology for hyperons:</u> ? rare experimental scattering data so far

THEIA Seminar, 10/02/2021

NLD Lagrangian : as in conventional Relativistic Hadrodynamics (RHD)

$$\mathcal{L} = \frac{1}{2} \sum_{B} \left[\overline{\Psi}_{B} \gamma_{\mu} i \overrightarrow{\partial}^{\mu} \Psi_{B} - \overline{\Psi}_{B} i \overleftarrow{\partial}^{\mu} \gamma_{\mu} \Psi_{B} \right] - \sum_{B} m_{B} \overline{\Psi}_{B} \Psi_{B} + \sum_{m=\sigma,\omega,\rho} \mathcal{L}_{int}^{m}.$$

For the baryon octet: 1

$$\Psi_B = (\Psi_N, \Psi_\Lambda, \Psi_\Sigma, \Psi_\Xi)^T$$

NLD Lagrangian : as in conventional Relativistic Hadrodynamics (RHD)

$$\mathcal{L} = \frac{1}{2} \sum_{B} \left[\overline{\Psi}_{B} \gamma_{\mu} i \overrightarrow{\partial}^{\mu} \Psi_{B} - \overline{\Psi}_{B} i \overleftarrow{\partial}^{\mu} \gamma_{\mu} \Psi_{B} \right] - \sum_{B} m_{B} \overline{\Psi}_{B} \Psi_{B} + \sum_{m=\sigma,\omega,\rho} \mathcal{L}_{int}^{m}.$$

For the baryon octet: Ψ

$$_B=(\Psi_N,\Psi_\Lambda,\Psi_\Sigma,\Psi_\Xi)^T$$

Interaction Lagrangian : as in conventional RHD

$$\mathcal{L}_{int}^{m} = \sum_{B} \frac{g_{mB}}{2} \left[\overline{\Psi}_{B} \Gamma_{m} \Psi_{B} \varphi_{m} + \varphi_{m} \overline{\Psi}_{B} \Gamma_{m} \Psi_{B} \right]$$

For (φ_m = $\sigma, \omega,
ho$)-baryon interaction with corresponding vertices $\Gamma_m = 1, \gamma^{\mu}, \ldots$

NLD Lagrangian : as in conventional Relativistic Hadrodynamics (RHD)

$$\mathcal{L} = \frac{1}{2} \sum_{B} \left[\overline{\Psi}_{B} \gamma_{\mu} i \overrightarrow{\partial}^{\mu} \Psi_{B} - \overline{\Psi}_{B} i \overleftarrow{\partial}^{\mu} \gamma_{\mu} \Psi_{B} \right] - \sum_{B} m_{B} \overline{\Psi}_{B} \Psi_{B} + \sum_{m=\sigma,\omega,\rho} \mathcal{L}_{int}^{m}.$$

For the baryon octet: Ψ

$$B = (\Psi_N, \Psi_\Lambda, \Psi_\Sigma, \Psi_\Xi)^T$$

Interaction Lagrangian : as in conventional RHD + non-linear derivative operators

$$\mathcal{L}_{int}^{m} = \sum_{B} \frac{g_{mB}}{2} \left[\overline{\Psi}_{B} \overleftarrow{\mathcal{D}}_{B} \Gamma_{m} \Psi_{B} \varphi_{m} + \varphi_{m} \overline{\Psi}_{B} \Gamma_{m} \overrightarrow{\mathcal{D}}_{B} \Psi_{B} \right],$$

For (φ_m = $\sigma, \omega,
ho$)-baryon interaction with corresponding vertices $\Gamma_m = 1\!\!1, \gamma^\mu, \dots$

NLD Lagrangian : as in conventional Relativistic Hadrodynamics (RHD)

$$\mathcal{L} = \frac{1}{2} \sum_{B} \left[\overline{\Psi}_{B} \gamma_{\mu} i \overrightarrow{\partial}^{\mu} \Psi_{B} - \overline{\Psi}_{B} i \overleftarrow{\partial}^{\mu} \gamma_{\mu} \Psi_{B} \right] - \sum_{B} m_{B} \overline{\Psi}_{B} \Psi_{B} + \sum_{m=\sigma,\omega,\rho} \mathcal{L}_{int}^{m}.$$

For the baryon octet: Ψ

$$_B = (\Psi_N, \Psi_\Lambda, \Psi_\Sigma, \Psi_\Xi)^T$$

Interaction Lagrangian : as in conventional RHD + non-linear derivative operators

$$\mathcal{L}_{int}^{m} = \sum_{B} \frac{g_{mB}}{2} \left[\overline{\Psi}_{B} \overleftarrow{\mathcal{D}}_{B} \Gamma_{m} \Psi_{B} \varphi_{m} + \varphi_{m} \overline{\Psi}_{B} \Gamma_{m} \overrightarrow{\mathcal{D}}_{B} \Psi_{B} \right],$$

For (qm = \sigma,w,p)-baryon interaction with corresponding vertices $\Gamma_m=1,\gamma^\mu,\ldots$

Non-linear derivative operators : Taylor expansion of partial derivatives $\boldsymbol{\xi}$

$$\overrightarrow{\mathcal{D}}_B := \mathcal{D}\left(\overrightarrow{\xi}_B\right), \ \overleftarrow{\mathcal{D}}_B := \mathcal{D}\left(\overleftarrow{\xi}_B\right) \text{ with } \overrightarrow{\xi}_B = -\frac{v^{\alpha}i\overrightarrow{\partial}_{\alpha}}{\Lambda_B}, \ \overleftarrow{\xi}_B = \frac{i\overleftarrow{\partial}_{\alpha}v^{\alpha}}{\Lambda_B}$$

 v^{α} auxiliarly 4-vector choosen such to get p-dependence

NLD Lagrangian : as in conventional Relativistic Hadrodynamics (RHD)

$$\mathcal{L} = \frac{1}{2} \sum_{B} \left[\overline{\Psi}_{B} \gamma_{\mu} i \overrightarrow{\partial}^{\mu} \Psi_{B} - \overline{\Psi}_{B} i \overleftarrow{\partial}^{\mu} \gamma_{\mu} \Psi_{B} \right] - \sum_{B} m_{B} \overline{\Psi}_{B} \Psi_{B} + \sum_{m=\sigma,\omega,\rho} \mathcal{L}_{int}^{m}.$$

For the baryon octet: Ψ

$$_B = (\Psi_N, \Psi_\Lambda, \Psi_\Sigma, \Psi_\Xi)^T$$

Interaction Lagrangian : as in conventional RHD + non-linear derivative operators

$$\mathcal{L}_{int}^{m} = \sum_{B} \frac{g_{mB}}{2} \left[\overline{\Psi}_{B} \overleftarrow{\mathcal{D}}_{B} \Gamma_{m} \Psi_{B} \varphi_{m} + \varphi_{m} \overline{\Psi}_{B} \Gamma_{m} \overrightarrow{\mathcal{D}}_{B} \Psi_{B} \right],$$

For (qm = \sigma,w,p)-baryon interaction with corresponding vertices $\Gamma_m=1,\gamma^\mu,\dots$

Non-linear derivative operators : Taylor expansion of partial derivatives $\boldsymbol{\xi}$

THEIA Seminar, 10/02/2021

NLD Lagrangian: contains higher field derivatives: $\mathcal{L}(\varphi_r, \partial_{\alpha_1}\varphi_r, \partial_{\alpha_1\alpha_2}\varphi_r, \cdots, \partial_{\alpha_1\dots\alpha_n}\varphi_r)$

 \rightarrow Generalized Euler-Lagrange equations:

$$\frac{\partial \mathcal{L}}{\partial \varphi_r} + \sum_{i=1}^n (-)^i \partial_{\alpha_1 \cdots \alpha_i} \frac{\partial \mathcal{L}}{\partial (\partial_{\alpha_1 \cdots \alpha_i} \varphi_r)} = 0$$

NLD Lagrangian: contains higher field derivatives: $\mathcal{L}(\varphi_r, \partial_{\alpha_1} \varphi_r, \partial_{\alpha_1 \alpha_2} \varphi_r, \cdots, \partial_{\alpha_1 \dots \alpha_n} \varphi_r)$

→ Generalized Euler-Lagrange equations:

$$\frac{\partial \mathcal{L}}{\partial \varphi_r} + \sum_{i=1}^n (-)^i \partial_{\alpha_1 \cdots \alpha_i} \frac{\partial \mathcal{L}}{\partial (\partial_{\alpha_1 \cdots \alpha_i} \varphi_r)} = 0$$

 \rightarrow Generalized Noether-Theorem: conserved current

$$J^{\mu} = -i \left[\mathcal{K}^{\mu}_{r} \varphi_{r} + \mathcal{K}^{\mu\sigma_{1}}_{r} \partial_{\sigma_{1}} \varphi_{r} + \mathcal{K}^{\mu\sigma_{1}\sigma_{2}}_{r} \partial_{\sigma_{1}\sigma_{2}} \varphi_{r} + \dots + \mathcal{K}^{\mu\sigma_{1}\cdots\sigma_{n}}_{r} \partial_{\sigma_{1}\cdots\sigma_{n}} \varphi_{r} \right]$$

with the following tensors

$$\mathcal{K}_r^{\mu\sigma_1\cdots\sigma_m} = \sum_{i=1}^n (-)^{i+1} \prod_{j=1}^{i-1} \partial_{\alpha_j} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu\alpha_j\sigma_1\cdots\sigma_m}\varphi_r)} \,.$$

NLD Lagrangian: contains higher field derivatives: $\mathcal{L}\left(arphi_{r},\,\partial_{lpha_{1}}arphi_{r},\,\partial_{lpha_{1}lpha_{2}}arphi_{r},\cdots,\partial_{lpha_{1}\dotslpha_{n}}arphi_{r}
ight)$

→ Generalized Euler-Lagrange equations:

$$\frac{\partial \mathcal{L}}{\partial \varphi_r} + \sum_{i=1}^n (-)^i \partial_{\alpha_1 \cdots \alpha_i} \frac{\partial \mathcal{L}}{\partial (\partial_{\alpha_1 \cdots \alpha_i} \varphi_r)} = 0$$

 \rightarrow Generalized Noether-Theorem: conserved current

$$J^{\mu} = -i \left[\mathcal{K}^{\mu}_{r} \varphi_{r} + \mathcal{K}^{\mu\sigma_{1}}_{r} \partial_{\sigma_{1}} \varphi_{r} + \mathcal{K}^{\mu\sigma_{1}\sigma_{2}}_{r} \partial_{\sigma_{1}\sigma_{2}} \varphi_{r} + \dots + \mathcal{K}^{\mu\sigma_{1}\dots\sigma_{n}}_{r} \partial_{\sigma_{1}\dots\sigma_{n}} \varphi_{r} \right]$$

with the following tensors

$$\mathcal{K}_r^{\mu\sigma_1\cdots\sigma_m} = \sum_{i=1}^n (-)^{i+1} \prod_{j=1}^{i-1} \partial_{\alpha_j} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu\alpha_j\sigma_1\cdots\sigma_m}\varphi_r)}$$

infinite series rsp. to higher-order field derivatives, but...

NLD Lagrangian: contains higher field derivatives: $\mathcal{L}\left(arphi_{r},\,\partial_{lpha_{1}}arphi_{r},\,\partial_{lpha_{1}lpha_{2}}arphi_{r},\cdots,\partial_{lpha_{1}\dotslpha_{n}}arphi_{r}
ight)$

→ Generalized Euler-Lagrange equations:

$$\frac{\partial \mathcal{L}}{\partial \varphi_r} + \sum_{i=1}^n (-)^i \partial_{\alpha_1 \cdots \alpha_i} \frac{\partial \mathcal{L}}{\partial (\partial_{\alpha_1 \cdots \alpha_i} \varphi_r)} = 0$$

→ Generalized Noether-Theorem: conserved current

$$J^{\mu} = -i \left[\mathcal{K}^{\mu}_{r} \varphi_{r} + \mathcal{K}^{\mu\sigma_{1}}_{r} \partial_{\sigma_{1}} \varphi_{r} + \mathcal{K}^{\mu\sigma_{1}\sigma_{2}}_{r} \partial_{\sigma_{1}\sigma_{2}} \varphi_{r} + \dots + \mathcal{K}^{\mu\sigma_{1}\cdots\sigma_{n}}_{r} \partial_{\sigma_{1}\cdots\sigma_{n}} \varphi_{r} \right]$$

with the following tensors

$$\mathcal{K}_{r}^{\mu\sigma_{1}\cdots\sigma_{m}} = \sum_{i=1}^{n} (-)^{i+1} \prod_{j=1}^{i-1} \partial_{\alpha_{j}} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu\alpha_{j}\sigma_{1}\cdots\sigma_{m}}\varphi_{r})}$$

All infinite series can be resummed to compact expressions

ightarrow Dirac equation for nucleons $\left[\gamma_{\mu} (i \partial^{\mu} - \Sigma^{\mu}) - (m - \Sigma_s) \right] \Psi = 0$ with selfenergies

$$egin{aligned} \Sigma^{\mu} &= g_{\omega} \omega^{\mu} \overrightarrow{\mathcal{D}} + g_{
ho} ec{ au} \cdot ec{
ho}^{\mu} \overrightarrow{\mathcal{D}} + \cdots \ \Sigma_{s} &= g_{\sigma} \sigma \overrightarrow{\mathcal{D}} + \cdots \end{aligned}$$
 (up t

c terms containing derivatives of the meson fields)

- $\begin{array}{l} \Rightarrow \mbox{ Dirac equation for nucleons } & \left[\gamma_{\mu} (i\partial^{\mu} \Sigma^{\mu}) (m \Sigma_{s}) \right] \Psi = 0 \\ \\ \Sigma^{\mu} = g_{\omega} \omega^{\mu} \overrightarrow{\mathcal{D}} + g_{\rho} \overrightarrow{\tau} \cdot \overrightarrow{\rho}^{\mu} \overrightarrow{\mathcal{D}} + \cdots \\ \\ \Sigma_{s} = g_{\sigma} \sigma \overrightarrow{\mathcal{D}} + \cdots \end{array} \right. \\ \begin{array}{l} (\mbox{up to terms containing derivatives of the meson fields}) \end{array}$
- \rightarrow Meson field equations:

$$\begin{split} \partial_{\alpha}\partial^{\alpha}\sigma + m_{\sigma}^{2}\sigma + \frac{\partial U}{\partial\sigma} &= \frac{1}{2}g_{\sigma}\left[\overline{\Psi}\overleftarrow{\mathcal{D}}\Psi + \overline{\Psi}\overrightarrow{\mathcal{D}}\Psi\right],\\ \partial_{\mu}F^{\mu\nu} + m_{\omega}^{2}\omega^{\nu} &= \frac{1}{2}g_{\omega}\left[\overline{\Psi}\overleftarrow{\mathcal{D}}\gamma^{\nu}\Psi + \overline{\Psi}\gamma^{\nu}\overrightarrow{\mathcal{D}}\Psi\right],\\ \partial_{\mu}\vec{G}^{\,\mu\nu} + m_{\rho}^{2}\vec{\rho}^{\,\nu} &= \frac{1}{2}g_{\rho}\left[\overline{\Psi}\overleftarrow{\mathcal{D}}\gamma^{\nu}\vec{\tau}\ \Psi + \overline{\Psi}\vec{\tau}\ \gamma^{\nu}\overrightarrow{\mathcal{D}}\Psi\right]\end{split}$$

- $\Rightarrow \text{ Dirac equation for nucleons } \boxed{\gamma_{\mu}(i\partial^{\mu} \Sigma^{\mu}) (m \Sigma_{s})} \Psi = 0 \text{ with selfenergies }$ $\sum_{\mu} = g_{\omega}\omega^{\mu}\overrightarrow{\mathcal{D}} + g_{\rho}\overrightarrow{\tau} \cdot \overrightarrow{\rho}^{\mu}\overrightarrow{\mathcal{D}} + \cdots$ $\sum_{s} = g_{\sigma}\sigma\overrightarrow{\mathcal{D}} + \cdots$ (up to terms containing derivatives of the meson fields)
- \rightarrow Meson field equations:

$$\begin{split} \partial_{\alpha}\partial^{\alpha}\sigma + m_{\sigma}^{2}\sigma + \frac{\partial U}{\partial\sigma} &= \frac{1}{2}g_{\sigma}\left[\overline{\Psi}\overleftarrow{\mathcal{D}}\Psi + \overline{\Psi}\overrightarrow{\mathcal{D}}\Psi\right],\\ \partial_{\mu}F^{\mu\nu} + m_{\omega}^{2}\omega^{\nu} &= \frac{1}{2}g_{\omega}\left[\overline{\Psi}\overleftarrow{\mathcal{D}}\gamma^{\nu}\Psi + \overline{\Psi}\gamma^{\nu}\overrightarrow{\mathcal{D}}\Psi\right],\\ \partial_{\mu}\vec{G}^{\,\mu\nu} + m_{\rho}^{2}\vec{\rho}^{\,\nu} &= \frac{1}{2}g_{\rho}\left[\overline{\Psi}\overleftarrow{\mathcal{D}}\gamma^{\nu}\vec{\tau}\ \Psi + \overline{\Psi}\vec{\tau}\ \gamma^{\nu}\overrightarrow{\mathcal{D}}\Psi\right]\end{split}$$

 \rightarrow Energy-momentum tensor:

$$T^{\mu\nu} = \frac{1}{2} \overline{\Psi} \gamma^{\mu} i \overrightarrow{\partial}^{\nu} \Psi - \frac{1}{2} \overline{\Psi} i \overleftarrow{\partial}^{\nu} \gamma^{\mu} \Psi + \frac{1}{2} \sum_{m} g_{m} \left[\overline{\Psi} \Gamma_{m} \overrightarrow{\Omega}^{\mu} i \overrightarrow{\partial}^{\nu} \Psi + \overline{\Psi} i \overleftarrow{\partial}^{\nu} \overleftarrow{\Omega}^{\mu} \Gamma_{m} \Psi \right] \varphi_{m} - g^{\mu\nu} \mathcal{L} + \cdots.$$

The NLD model: RMF approach to INM...

ightarrow Plane wave Ansatz for Ψ and $\overline{\Psi}\,$ with $\mathcal{D}=\mathcal{D}(p)$

$$\begin{split} \Sigma_{vi}^{\mu} &= g_{\omega} \omega^{\mu} \mathcal{D} + g_{\rho} \tau_{i} \rho^{\mu} \mathcal{D} , \ \Sigma_{si} = g_{\sigma} \sigma \mathcal{D} \\ m_{\sigma}^{2} \sigma + \frac{\partial U}{\partial \sigma} = g_{\sigma} \sum_{i=p,n} \left\langle \overline{\Psi}_{i} \mathcal{D} \Psi_{i} \right\rangle = g_{\sigma} \rho_{s} \\ m_{\omega}^{2} \omega = g_{\omega} \sum_{i=p,n} \left\langle \overline{\Psi}_{i} \gamma^{0} \mathcal{D} \Psi_{i} \right\rangle = g_{\omega} \rho_{0} \\ m_{\rho}^{2} \rho = g_{\rho} \sum_{i=p,n} \tau_{i} \left\langle \overline{\Psi}_{i} \gamma^{0} \mathcal{D} \Psi_{i} \right\rangle = g_{\rho} \rho_{I} . \end{split}$$

$$T^{\mu\nu} = \sum_{i=p,n} \frac{\kappa}{(2\pi)^3} \int d^3p \, \frac{\Pi_i^{\mu} p^{\nu}}{\Pi_i^0} - g^{\mu\nu} \langle \mathcal{L} \rangle$$
$$\Pi_i^{\mu} = p_i^{*\mu} + m_i^* \left(\partial_p^{\mu} \Sigma_{si} \right) - \left(\partial_p^{\mu} \Sigma_{vi}^{\beta} \right) p_{i\beta}^*$$

The NLD model: RMF approach to INM...

ightarrow Plane wave Ansatz for Ψ and $\overline{\Psi}$ with $\mathcal{D}=\mathcal{D}(p)$

$$\Sigma^{\mu}_{vi} = g_{\omega} \omega^{\mu} \mathcal{D} + g_{\rho} \tau_i \rho^{\mu} \mathcal{D} \ , \ \Sigma_{si} = g_{\sigma} \sigma \mathcal{D}$$

meson-field equations

$$egin{aligned} m_{\sigma}^2 \sigma &+ rac{\partial U}{\partial \sigma} = g_{\sigma} \sum_{i=p,n} \left\langle \overline{\Psi}_i \mathcal{D} \Psi_i
ight
angle &= g_{\sigma}
ho_s \ m_{\omega}^2 \omega = g_{\omega} \sum_{i=p,n} \left\langle \overline{\Psi}_i \gamma^0 \mathcal{D} \Psi_i
ight
angle &= g_{\omega}
ho_0 \ m_{
ho}^2
ho = g_{
ho} \sum_{i=p,n} au_i \left\langle \overline{\Psi}_i \gamma^0 \mathcal{D} \Psi_i
ight
angle &= g_{
ho}
ho_I \ . \end{aligned}$$

Equation of State (EoS)

$$\begin{split} \varepsilon &= \sum_{i=p,n} \frac{\kappa}{(2\pi)^3} \int d^3 p \, E(\vec{p}) - \langle \mathcal{L} \rangle \\ P &= \frac{1}{3} \sum_{i=p,n} \frac{\kappa}{(2\pi)^3} \int d^3 p \, \frac{\vec{\Pi} \, i \cdot \vec{p}}{\prod_i^0} + \langle \mathcal{L} \rangle \end{split}$$

Features of NLD...

ightarrow Plane wave Ansatz for Ψ and $\overline{\Psi}$ with $\mathcal{D}=\mathcal{D}(p)$

$$\Sigma^{\mu}_{vi} = g_{\omega} \omega^{\mu} \mathcal{D} + g_{
ho} \tau_i \rho^{\mu} \mathcal{D} \ , \ \Sigma_{si} = g_{\sigma} \sigma \mathcal{D}$$

meson-field equations

$$\begin{split} m_{\sigma}^{2}\sigma + \frac{\partial U}{\partial \sigma} = & g_{\sigma} \sum_{i=p,n} \left\langle \overline{\Psi}_{i} \mathcal{D} \Psi_{i} \right\rangle = g_{\sigma} \rho_{s} \\ m_{\omega}^{2}\omega = & g_{\omega} \sum_{i=p,n} \left\langle \overline{\Psi}_{i} \gamma^{0} \mathcal{D} \Psi_{i} \right\rangle = g_{\omega} \rho_{0} \\ m_{\rho}^{2}\rho = & g_{\rho} \sum_{i=p,n} \tau_{i} \left\langle \overline{\Psi}_{i} \gamma^{0} \mathcal{D} \Psi_{i} \right\rangle = g_{\rho} \rho_{I} \end{split}$$

Equation of State (EoS)

$$\begin{split} \varepsilon &= \sum_{i=p,n} \frac{\kappa}{(2\pi)^3} \int d^3 p \, E(\vec{p}) - \langle \mathcal{L} \rangle \\ P &= \frac{1}{3} \sum_{i=p,n} \frac{\kappa}{(2\pi)^3} \int d^3 p \, \frac{\vec{\Pi}_i \cdot \vec{p}}{\prod_i^0} + \langle \mathcal{L} \rangle \end{split}$$

cut-off ∧ regulates:1) DD & MD of selfenergies

Features of NLD...

ightarrow Plane wave Ansatz for Ψ and $\overline{\Psi}$ with $\mathcal{D}=\mathcal{D}(p)$

$$\Sigma^{\mu}_{vi} = g_{\omega} \omega^{\mu} \mathcal{D} + g_{
ho} \tau_i \rho^{\mu} \mathcal{D} \ , \ \Sigma_{si} = g_{\sigma} \sigma \mathcal{D}$$

meson-field equations

$$\begin{split} m_{\sigma}^{2}\sigma + \frac{\partial U}{\partial \sigma} = g_{\sigma} \sum_{i=p,n} \left\langle \overline{\Psi}_{i} \mathcal{D} \Psi_{i} \right\rangle &= g_{\sigma} \rho_{s} \\ m_{\omega}^{2} \omega = g_{\omega} \sum_{i=p,n} \left\langle \overline{\Psi}_{i} \gamma^{0} \mathcal{D} \Psi_{i} \right\rangle &= g_{\omega} \rho_{0} \\ m_{\rho}^{2} \rho = g_{\rho} \sum_{i=p,n} \tau_{i} \left\langle \overline{\Psi}_{i} \gamma^{0} \mathcal{D} \Psi_{i} \right\rangle &= g_{\rho} \rho_{I} \end{split}$$

cut-off ∧ regulates:1) DD & MD of selfenergies

DD of meson-field sources (particularly for ω-field)

Equation of State (EoS)

$$\begin{split} \varepsilon &= \sum_{i=p,n} \frac{\kappa}{(2\pi)^3} \int d^3 p \, E(\vec{p}) - \langle \mathcal{L} \rangle \\ P &= \frac{1}{3} \sum_{i=p,n} \frac{\kappa}{(2\pi)^3} \int d^3 p \, \frac{\vec{\Pi}_i \cdot \vec{p}}{\prod_i^0} + \langle \mathcal{L} \rangle \end{split}$$

Features of NLD...

ightarrow Plane wave Ansatz for Ψ and $\overline{\Psi}$ with $\mathcal{D}=\mathcal{D}(p)$

$$\Sigma^{\mu}_{vi} = g_{\omega} \omega^{\mu} \mathcal{D} + g_{
ho} \tau_i \rho^{\mu} \mathcal{D} \ , \ \Sigma_{si} = g_{\sigma} \sigma \mathcal{D}$$

meson-field equations

$$m_{\sigma}^{2}\sigma + \frac{\partial U}{\partial \sigma} = g_{\sigma} \sum_{i=p,n} \left\langle \overline{\Psi}_{i} \mathcal{D} \Psi_{i} \right\rangle = g_{\sigma} \rho_{s}$$

 $m_{\omega}^{2}\omega = g_{\omega} \sum_{i=p,n} \left\langle \overline{\Psi}_{i} \gamma^{0} \mathcal{D} \Psi_{i} \right\rangle = g_{\omega} \rho_{0}$
 $m_{\rho}^{2}\rho = g_{\rho} \sum_{i=p,n} \tau_{i} \left\langle \overline{\Psi}_{i} \gamma^{0} \mathcal{D} \Psi_{i} \right\rangle = g_{\rho} \rho_{I}$

cut-off ∧ regulates: 1) DD & MD of selfenergies

2) DD of meson-field sources(particularly for ω-field)

Equation of State (EoS)

$$\varepsilon = \sum_{i=p,n} \frac{\kappa}{(2\pi)^3} \int d^3 p \, E(\vec{p}) - \langle \mathcal{L} \rangle$$
$$P = \frac{1}{3} \sum_{i=p,n} \frac{\kappa}{(2\pi)^3} \int d^3 p \, \frac{\vec{\Pi}_i \cdot \vec{p}}{\Pi_i^0} + \langle \mathcal{L} \rangle$$

3) fully thermodynamic consistent

Parameters

	$\vec{\mathcal{D}}$	cut-off	Λ_s [GeV]	Λ_v [GeV]	g_{σ}	g_{ω}	9 ρ	b [fm ⁻¹]	С	m_{σ} [GeV]	m_{ω} [GeV]	<i>m</i> _ρ [GeV]
NLD	$\frac{1}{1+\sum_{j=1}^{4}\left(\zeta_{j}^{\alpha}i\overrightarrow{\partial}_{\alpha}\right)^{2}}$	$\frac{\Lambda^2}{\Lambda^2 + \vec{p}^{2}}$	0.95	1.125	10.08	10.13	3.50	15.341	-14.735	0.592	0.782	0.763

Comparison with other models

Model	$ ho_{sat}$ $[fm^{-3}]$	E_b [MeV/A]	K [MeV]	a_{sym} $[{ m MeV}]$	L [MeV]	K _{sym} [MeV]	K_{asy} [MeV]	
NLD	0.156	-15.30	251	30	81	-28	-514	
NL3*	0.150	-16.31	258	38.68	125.7	104.08	-650.12	→ Lalazissis
DD	0.149	-16.02	240	31.60	56	-95.30	-431.30	- Typel
D ³ C	0.151	-15.98	232.5	31.90	59.30	-74.7	-430.50	→ турет
DBHF	0.185	-15.60	290	33.35	71.10	-27.1	-453.70	→ Li, Machleidt, Brockmann
	0.181	-16.15	230	34.20	71	87.36	-340	→ Fuchs
empirical	0.167 ± 0.019	-16 ± 1	230 ± 10	31.1 ± 1.9	88 ± 25	-	-550 ± 100	THEIA Seminar, 10/02/2021

Parameters

	$\overrightarrow{\mathcal{D}}$	cut-off	[GeV]	ole form	g _p	b [fm ⁻¹]	С	m_{σ} [GeV]	m_{ω} [GeV]	m _ρ [GeV]
NLD	$\frac{1}{1+\sum_{j=1}^{4}\left(\zeta_{j}^{\alpha}i\overrightarrow{\partial}_{\alpha}\right)^{2}}$	$\frac{\Lambda^2}{\Lambda^2 + \vec{p}^{2}}$	0.95 1.125	10.08 10.13	3.50	15.341	-14.735	0.592	0.782	0.763

Comparison with other models

Model	$ ho_{sat}$ $[fm^{-3}]$	E_b [MeV/A]	K [MeV]	a_{sym} [MeV]	L [MeV]	K _{sym} [MeV]	K _{asy} [MeV]	
NLD	0.156	-15.30	251	30	81	-28	-514	
NL3*	0.150	-16.31	258	38.68	125.7	104.08	-650.12	→ Lalazissis
DD	0.149	-16.02	240	31.60	56	-95.30	-431.30	
D ³ C	0.151	-15.98	232.5	31.90	59.30	-74.7	-430.50	→ турет
DBHF	0.185	-15.60	290	33.35	71.10	-27.1	-453.70	→ Li, Machleidt, Brockmann
	0.181	-16.15	230	34.20	71	87.36	-340	→ Fuchs
empirical	0.167 ± 0.019	-16 ± 1	230 ± 10	31.1 ± 1.9	88 ± 25	-	-550 ± 100	THEIA Seminar, 10/02/2021

Parameters

	$\overrightarrow{\mathcal{D}}$	cut-off	Λ_s [GeV]	Λ _v [GeV]	g_{σ}	g_{ω}	9p	b [fm ⁻¹]	С	m_{σ} [GeV]	m_{ω} [GeV]	m _ρ [GeV]
NLD	$\frac{1}{1+\sum_{j=1}^{4}\left(\zeta_{j}^{\alpha}i\overrightarrow{\partial}_{\alpha}\right)^{2}}$	$\frac{\Lambda^2}{\Lambda^2 + \vec{p^{2}}}$	0.95	1.125	10.08	10.13	3.50	15.341	-14.735	0.592	0.782	0.763

Comparison with other models

Model	$ ho_{sat}$ $[fm^{-3}]$	E_b [MeV/A]	K [MeV]	but s	sof stiff at l	t EoSα high ρ r	r NS!	
NLD	0.156	-15.30	251	30	81	-28	-514	
NL3*	0.150	-16.31	258	38.68	125.7	104.08	-650.12	→ Lalazissis
DD	0.149	-16.02	240	31.60	56	-95.30	-431.30	- Typel
D ³ C	0.151	-15.98	232.5	31.90	59.30	-74.7	-430.50	
DBHF	0.185	-15.60	290	33.35	71.10	-27.1	-453.70	→ Li, Machleidt, Brockmann
	0.181	-16.15	230	34.20	71	87.36	-340	→ Fuchs
empirical	0.167 ± 0.019	-16 ± 1	230 ± 10	$31.1\pm~1.9$	88 ± 25	-	-550 ± 100	THEIA Seminar, 10/02/2021

Basic properties: nuclear Eos & opt. potentials...

Basic properties: nuclear Eos & opt. potentials...

Remarkable comparison with microscopic DBHF

THEIA Seminar, 10/02/2021

Nucl. Phys. A899 (2013) 133

Nucl. Phys. A899 (2013) 133

THEIA Seminar, 10/02/2021

THEIA Seminar, 10/02/2021

Nucl. Phys. A899 (2013) 133
Basic properties: nuclear EoS & opt. potentials.

In-medium **anti-proton** SEP (real part)

Basic properties: nuclear EoS & opt. potentials.

In-medium **anti-proton** SEP (real part)

Basic properties: nuclear EoS & opt. potentials...

Also: NLD provides the <u>imaginary part</u> of SEP for anti-proton in-medium interactions using dispersion relation (without subtractions)

Nucl. Phys. A940 (2015) 181

Basic properties: nuclear EoS & opt. potentials.

In-medium anti-proton SEP (imag. part)

Also: NLD provides the <u>imaginary part</u> of SEP for anti-proton in-medium interactions using dispersion relation (without subtractions)

Nucl. Phys. A940 (2015) 181

Basic properties: nuclear EoS & opt. potentials.

In-medium anti-proton SEP (imag. part)

NLD + SU(6) for standard meson-nucleon couplings Hyperon cut-off regulates MDI

THEIA Seminar, 10/02/2021

SU(6) for standard meson-nucleon couplings + NLD (monopole forms) SNM, saturation density, adjust to xEFT

<u>Hyperon properties: Λ , Σ -optical potentials...</u>

SU(6) for standard meson-nucleon couplings + NLD (monopole forms) SNM, saturation density, adjust to xEFT

<u>Hyperon properties: Λ , Σ -optical potentials...</u>

SU(6) for standard meson-nucleon couplings + NLD (monopole forms) SNM, saturation density, adjust to xEFT

NLD predictions: density & momentum dependence

THEIA Seminar, 10/02/2021

<u>Hyperon properties: Λ , Σ -optical potentials...</u>

THEIA Seminar, 10/02/2021

<u>Hyperon properties: Λ , Σ -optical potentials...</u>

THEIA Seminar, 10/02/2021

<u>Hyperon properties: Λ . Σ -optical potentials...</u>

THEIA Seminar, 10/02/2021

<u>Hyperon properties: Λ . Σ -optical potentials...</u>

THEIA Seminar, 10/02/2021

<u>Hyperon properties: Λ , Σ -optical potentials...</u>

NLD predictions: density & momentum dependence

Nucl. Phys. (2021) in press

THEIA Seminar, 10/02/2021

density & momentum dependence pure neutron matter

<u>Hyperon properties: Λ , Σ -optical potentials...</u>

NLD fit:

density & momentum dependence pure neutron matter

NLD predictions: density & momentum dependence pure neutron matter

NLD predictions: density & momentum dependence pure neutron matter

Nucl. Phys. (2021) in press

THEIA Seminar, 10/02/2021

NLD fit: density & momentum dependence symmetric NM

NLD predictions: density & momentum dependence SNM & pure neutron matter

THEIA Seminar, 10/02/2021

Nucl. Phys. (2021) in press

NLD predictions: density & momentum dependence G-parity, no parameters

real part & imag part

Nucl. Phys. (2021) in press

THEIA Seminar, 10/02/2021

Final remarks & outlook...

►NLD model

 \rightarrow keeping simplicity (RMF) to describe complexity (non-linear ρ & p dependences)

- ightarrow realized by covariant introduction of regulators on a Lagrangian level
- \rightarrow in RMF: cut-off Λ regulates high $\rho\text{-}$ & p-components of mean-fields
- \rightarrow cut-off \wedge regulates also p-dependence of hyperon opt. pot.!

NLD Results

- → EoS soft at low ρ (K~250 MeV), but stiff at high ρ compatible with all recent observations of EoS & NS
- \rightarrow Correct MD for in-medium proton (!) and (!) antiproton interactions
- \rightarrow compatible with recent results from χ -EFT for hyperons in matter
- \rightarrow strong potentials for anti-Y & strong contributions from imag. parts

Under progress developments: include NLD mean-fields in...

- \rightarrow transport model for HADES (π +A induced reactions)
- \rightarrow transport model for PANDA (p-A & Ξ -A induced reactions)
- \rightarrow application to β -equilibrated matter for NS

Back up slides

THEIA Seminar, 10/02/2021

THEIA Seminar, 10/02/2021

Explore in-medium A-pot: HADES experiment...

Key Information

- HADES Spectrometer at GSI
- Secondary π^- -beam 1.7 GeV/c

ଷ	Target	W	С
₩	Segment Length [mm]	2.4	7.2
. \$.	$\rho [g/cm^3]$	19.3	1.85
٠	A	183.84	12.011
lhh	Statistics [x10 ⁸]	1.69	2.00

Idea:

- ▶ Search for Charge Pattern 2+ 2- ($\Lambda \rightarrow p + \pi^-, K^0 \rightarrow \pi^+ + \pi^-$)
- Make best assignment of bouble π^- occurence by minimizing: $\Delta M_{\Lambda} = M_{INV}(p + \pi^-) - M(\Lambda)_{PDG}$ $\Delta M_{K0} = M_{INV}(\pi^+ + \pi^-) - M(K0)_{PDG}$ For all π^- Combination
- Cut on 2D ΔM_{Λ} vs. ΔM_{K0}

Icons from: https://www.flaticon.com/

Explore in-medium A-pot: HADES new data...

Explore in-medium A-pot: HADES new data...

THEIA Seminar, 10/02/2021

