

S-shell $\Lambda\Lambda$ Hypernuclei Based on Chiral Interactions

Hoai Le, IAS Forschungszentrum Jülich, Germany in collaboration with Johann Haidenbauer, Ulf-G Meißner, Andreas Nogga

Theia-Strong2020 Web Seminar

Outline

- Introduction
 - Baryon-Baryon interactions in chiral effective field theory (χ EFT)
 - Few-body techniques for S=-2
- Numerical approach:
 - Similarity Renormalization Group (SRG)
 - ► Jacobi no-core shell model (J-NCSM) for S=-2
- Results for A=4-6 $\Lambda\Lambda$ hypernuclei
- Conclusions & outlook

Introduction

2

Baryon-Baryon interactions in χ **EFT**

LO: H. Polinder et al., NPA 779 (2006). NLO: J. Haidenbauer et al., NPA 915 (2013)

- degrees of freedom: octet baryons $(N, \Lambda, \Sigma, \Xi)$, pseudoscalar mesons (π, K, η)
- based on Weinberg power counting as in the NN case

• exploit $SU(3)_f$ to fix BBM couplings and relate various LECs, allow $SU(3)_f$ breaking where it seems appropriate

number of LECs:

NN: 2 (LO)	7 (<mark>NLO</mark>)
YN: +3 (LO)	+11 (<mark>NLO</mark>)
YY: +1 (LO)	+4 (NLO)

äift with (left) and without (right) ΣN coupling. Same description of curves arig.Fig. 🗓 ΛN phase shift with (left) and without (right) ΣN coupling. Same description of curves arig.Fig. 🗓

glied der H<mark>&</mark>Imholtz-G

Constraints from S=-2 sector

- information about S=-2 sector is very limited:
 - some data/ limits for ΞN (in)elastic cross sections (200 < P_{Ξ} < 800 MeV/c) J.K. Ahn et al, PLB 633 (2006) 214
 - Nagara event: $\Delta B_{\Lambda\Lambda} = B_{\Lambda\Lambda} ({}^{6}_{\Lambda\Lambda} \text{He}) 2B_{\Lambda} ({}^{5}_{\Lambda} \text{He}) = 1.01 \pm 0.2 \text{ MeV}$ = 0.67 ± 0.17 MeV

H. Takahashi et al., PRL 87 (2001) 212502 K. Nakazawa et al., NPA 835 (2010) 207

 \Rightarrow -1.32 < $a_{\Lambda\Lambda}$ < -0.73 fm (based on the 2001 value)

• some events support Ξ -bound states

 $\Xi^{-}-{}^{14}N$ K. Nakazawa et al., PTEP (2015) 033D02 (KISO), arXiv : 22010.14317 [nucl-ex] (IBUKI) $\Xi^{-}-{}^{11}B$ T. Nagae et al., PoS (INPC2016) 038, AIP Conf. Proc 2130 (2019), talk Theia-strong2020 \Rightarrow a weakly attractive $U_{\Xi} \approx -14$ MeV

- exploit strict $SU(3)_f$ to relate LECs in S=-2 sector to LECs in S=0,-1 sectors
- \Rightarrow 5 unknown LECs (2 in s-wave, 3 in p-wave) at NLO

YY interactions up to NLO

LICH

100

LO: H. Polinder et al., PLB 653 (2007) 29.

NLO: J. Haidenbauer et al., NPA 954 (2016) 273, EPJA 55 (2019) 23

two unknown s-wave LECs are determined via a fit to the scarce YY data

100 r

100

90

80

30

only qualitative determinations of LECs are feasible

YY	$a_{\Lambda\Lambda}(^{1}S_{0})$	$\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}He)$		
	[fm]	[MeV]		
LO(600)	-1.52	?		
NLO19(600)	-0.66	?		
ESC08c	-5.36	0.97,,1.37		
fss2	0.32	1.27,, 1.41		
Experiment	?	1.01; 0.67		

ESC08c: M. M. Nagels et al., arXiv:1504:02634 fss2: Y. Fujiwara et al., Prog. PNP 58 (2007)

60 additional constraints on YY interactions are exeested from few-body calculations or lattice simulations 40

Stochastic variational method $A \leq 6$

H. Nemura et al., PTP 103 (1999), PRL 94 (2005)

- ΛN interactions based on soft-core Nijmegen, adjusted to reproduce $A = 3 5 B_{\Lambda}$
- central YY potentials, all particle conversions in S=-1, -2 are considered
- → ${}^{6}_{\Lambda\Lambda}$ He, ${}^{5}_{\Lambda\Lambda}$ H/He are strongly bound, $B_{\Lambda\Lambda}({}^{4}_{\Lambda\Lambda}$ H) $\approx 2 \text{ keV}$

L. Contessi et al., PLB 797 (2019)

- use pionless EFT interactions at LO
- \rightarrow $|a_{\Lambda\Lambda}| > 1.5$ fm in order to obtain bound $^{4}_{\Lambda\Lambda}$ H
- \longrightarrow the existence of ${}^{4}_{\Lambda\Lambda}$ H is incompatible with the Nagara result for ${}^{6}_{\Lambda\Lambda}$ He

Stochastic variational method $A \leq 6$

- H. Nemura et al., PTP 103 (1999), PRL 94 (2005)
 - ΛN interactions based on soft-core Nijmegen, adjusted to reproduce $A = 3 5 B_{\Lambda}$
 - central YY potentials, all particle conversions in S=-1, -2 are considered
 - → ${}^{6}_{\Lambda\Lambda}$ He, ${}^{5}_{\Lambda\Lambda}$ H/He are strongly bound, $B_{\Lambda\Lambda}({}^{4}_{\Lambda\Lambda}$ H) $\approx 2 \text{ keV}$

L. Contessi et al., PLB 797 (2019)

- use pionless EFT interactions at LO
- \rightarrow $|a_{\Lambda\Lambda}| > 1.5$ fm in order to obtain bound $^{4}_{\Lambda\Lambda}$ H
- \rightarrow the existence of $^{4}_{\Lambda\Lambda}$ H is incompatible with the Nagara result for $^{6}_{\Lambda\Lambda}$ He

Cluster models: $\alpha's + \Lambda's + N's$

Jacobian-coordinate Gaussian expansion method $A \leq 11$

- E. Hiyama et al., PTP 97 (1997), PRC 66 (2002), Ann. RNP Sci. (2018)
- use simulated G-matrix potentials derived from OBE interactions
- $\Lambda N \Sigma N, YY \Xi N$ conversions are not treated explicitly
- \rightarrow may affect the predictions for s-shell $\Lambda\Lambda$ hypernuclei, but not p-shell

(E. Hiyama talk LEAP (2013))

Cluster models: $\alpha's + \Lambda's + N's$

Jacobian-coordinate Gaussian expansion method $A \leq 11$

E. Hiyama et al., PTP 97 (1997), PRC 66 (2002), Ann. RNP Sci. (2018)

Faddeev-Yakubovsky calculations $A \leq 10$

- I. Filikhin A. Gal PRL 89 (2002), NP A 707 (2002)
- employ two-range Gaussian $V_{\alpha\Lambda}$, $V_{\alpha\alpha}$, and the simulated $V_{\gamma\gamma}$ but restrict to s-wave
- \rightarrow predictions for $^{4}_{\Lambda\Lambda}$ H are model sensitive:
 - no bound state using $\Lambda + \Lambda + n + p$ model
 - particle-stable within $\Lambda + \Lambda + d$ model for $-a_{\Lambda\Lambda} \ge 0.5$ fm

Cluster models: $\alpha's + \Lambda's + N's$

Jacobian-coordinate Gaussian expansion method $A \leq 11$

E. Hiyama et al., PTP 97 (1997), PRC 66 (2002), Ann. RNP Sci. (2018)

Faddeev-Yakubovsky calculations $A \leq 10$

- I. Filikhin A. Gal PRL 89 (2002), NP A 707 (2002)
- employ two-range Gaussian $V_{\alpha\Lambda}$, $V_{\alpha\alpha}$, and the simulated $V_{\gamma\gamma}$ but restrict to s-wave
- \rightarrow predictions for $^{4}_{\Lambda\Lambda}$ H are model sensitive:
 - no bound state using $\Lambda + \Lambda + n + p$ model
 - particle-stable within $\Lambda + \Lambda + d$ model for $-a_{\Lambda\Lambda} \ge 0.5$ fm

Our aim:

- develop Jacobi NCSM for S=-2 hypernuclei
 - based on realistic chiral NN, YN and YY interactions
 - $\Lambda N \Sigma N$, $YY \Xi N$ conversions are explicitly taken into account
- \rightarrow study predictions of LO and NLO YY potentials for A=4-6 $\Lambda\Lambda$ hypernuclei
- provide useful constraints to improve YY interactions

Similarity Renormalization Group (SRG)

8

Similarity Renormalization Group (SRG)

- BB interactions contain short-range and tensor correlations that couple low- and high-momentum states
 NCSM calculations converge slowly
- pre-diagonalize the Hamiltonian via SRG

F.J. Wegner NPB 90 (2000). S.K. Bogner et al., PRC 75 (2007)

$$\frac{dV_s}{ds} = \left[\left[\sum \frac{p^2}{2\mu}, V_s \right], H_s \right], \qquad H_s = T_{rel} + V_s = T_{rel} + V_s^{NN} + V_s^{YN} + V_s^{YY} \qquad \text{Eq.(1)}$$

- restrict to 2-body space \Rightarrow $V_s^{NN}, V_s^{YN}, V_s^{YY}$ can be evolved separately
- project Eq.(1) on partial-wave momentum basis: $|p\alpha\rangle \equiv |p(ls)J; t_1 m_{t_1}S_1 t_2 m_{t_2}S_2\rangle$

$$\Rightarrow \qquad \frac{dV_{s}^{\alpha\alpha'}(pp')}{ds} = \left\{ T_{rel}^{\alpha}(p)\frac{p'^{2}}{2\mu^{\alpha'}} + T_{rel}^{\alpha'}(p')\frac{p^{2}}{2\mu^{\alpha}} - T_{rel}^{\alpha}(p)\frac{p^{2}}{2\mu^{\alpha}} - T_{rel}^{\alpha'}(p')\frac{p'^{2}}{2\mu^{\alpha'}} \right\} V_{s}^{\alpha\alpha'}(pp')$$

drives V towards the diagonal

$$+\sum_{\tilde{\alpha}}\int_{0}^{\infty}dkk^{2}\left\{\frac{p^{2}}{2\mu^{\alpha}}+\frac{p^{'2}}{2\mu^{\alpha'}}-\frac{k^{2}}{\mu^{\tilde{\alpha}}}\right\}V_{s}^{\alpha\tilde{\alpha}}(pk)V_{s}^{\tilde{\alpha}\alpha'}(kp')$$

preserves unitarity

- $\lambda = (4\mu^2/s)^{1/4}$: a measure of the width of V in p-space (S.K. Bogner et al. PRC 75 (2007))
 - omit SRG-induced 3B, 4B... forces $\Rightarrow E_b = E_b(\lambda)$

SRG-evolved YY potentials

SRG-evolved YY potentials

Diagonal matrix elements of $V_{\Lambda\Lambda-\Lambda\Lambda}$ potential. Initial potential: YY-NLO, $\Lambda_{YY} = 600$ MeV.

Jacobi No-Core Shell Model (J-NCSM)

Jacobi No-Core Shell Model (J-NCSM)

 an expansion of the wavefunction in a many-body HO basis depending on Jacobi coordinates

- ▶ explicit removal of c.m. motion ⇒ significantly reduce dimensionality as compared to other realisations (e.g., m-scheme NCSM)
- inclusion of higher-body forces is straightforward
- antisymmetrization of basis states is demanding $(A \le 9)$
- all particles are active (no inert core) \Rightarrow employ microscopic BB interactions
- converge slowly \Rightarrow require soft interactions (use techniques e.g., Vlow_k, SRG)

Jacobi Basis States for S=-2

• diagonalize the hypernuclear Hamiltonian,

$$H = T_{rel} + V_{NN}^{S=0} + V_{YN}^{S=-1} + V_{YY}^{S=-2} + \Delta M + \cdots$$

in a finite A-particle harmonic oscillator (HO) basis

- allow all possible particle conversions:
 - $\Lambda N \leftrightarrow \Sigma N$ in S = -1 sector
 - $Y_1Y_2 \leftrightarrow \Xi N$ and $Y_1Y_2 \leftrightarrow Y_1Y_2$; $Y_1, Y_2 = \Lambda, \Sigma$ in S = -2 sector

⇒ split basis functions into two orthogonal sets

$$= |\mathcal{N}JT, \alpha_{A-2} \underbrace{\alpha_{Y_1Y_2}}_{|\Lambda\Lambda\rangle, |\Lambda\Sigma\rangle, |\Sigma\Sigma\rangle} n_{\lambda}\lambda; ((l_{Y_1Y_2}S_{Y_1Y_2})J_{Y_1Y_2}(\lambda J_{A-2})I_{\lambda})J, ((t_{Y_1}t_{Y_2})T_{Y_1Y_2}T_{A-2})T\rangle \equiv |\alpha^{*(Y_1Y_2)}\rangle$$

$$\left| \mathbf{O}^{\underline{-}} \right\rangle = \left| \mathcal{N}JT, \alpha_{A-1} n_{\Xi} l_{\Xi} t_{\Xi}; (J_{A-1}(l_{\Xi} s) I_{\Xi}) J, (T_{A-1} t_{\Xi}) T \right\rangle \equiv \left| \alpha^{*(\Xi)} \right\rangle$$

⇒ hypernuclear wavefunction

$$|\Psi(\pi,J,T)\rangle = \sum_{\alpha^{*(Y_1Y_2)}} C_{\alpha^{*(Y_1Y_2)}} |\alpha^{*(Y_1Y_2)}(\mathcal{N}JT)\rangle + \sum_{\alpha^{*(\Xi)}} C_{\alpha^{*(\Xi)}} |\alpha^{*(\Xi)}(\mathcal{N}JT)\rangle$$

S=-2 Hamiltonian in Jacobi Coordinates

$$\langle \Psi(\pi JT) | H | \Psi(\pi JT) \rangle = \sum_{\substack{\alpha^{*(Y_{1}Y_{2})} \\ \alpha^{'*(Y_{1}Y_{2})}}} C_{\alpha^{*(Y_{1}Y_{2})}} C_{\alpha^{'*(Y_{1}Y_{2})}} \langle \alpha^{*(Y_{1}Y_{2})} | H | \alpha^{'*(Y_{1}Y_{2})} \rangle }$$

$$+ \sum_{\substack{\alpha^{*(Z_{1})} \\ \alpha^{'*(Z_{1})}}} C_{\alpha^{*(Z_{1})}} C_{\alpha^{'*(Z_{1})}} \langle \alpha^{(Z_{1})} \rangle | H | \alpha^{'*(Z_{1})} \rangle$$

$$+ \sum_{\substack{\alpha^{*(Y_{1}Y_{2})} \\ \alpha^{'*(Z_{1})}}} 2 C_{\alpha^{*(Y_{1}Y_{2})}} C_{\alpha^{'*(Z_{1})}} \langle \alpha^{*(Y_{1}Y_{2})} | H | \alpha^{'*(Z_{1})} \rangle$$

 \Rightarrow we distinguish three parts of the Hamiltonian:

$$H_{Y_{1}Y_{2}} = \sum_{i < j=1}^{A-2} \left(\frac{2p_{ij}^{2}}{M(t_{Y_{1}}, t_{Y_{2}})} + V_{ij}^{s=0} \right) \\ + \sum_{i=1}^{A-2} \left(\frac{m_{N} + m(t_{Y_{1}})}{M(t_{Y_{1}}, t_{Y_{2}})} \frac{p_{iY_{1}}^{2}}{2\mu_{iY_{1}}} + V_{iY_{1}}^{s=-1} + \frac{m_{N} + m(t_{Y_{2}})}{M(t_{Y_{1}}, t_{Y_{2}})} \frac{p_{iY_{2}}^{2}}{2\mu_{iY_{2}}} + V_{iY_{2}}^{s=-1} \right) \\ + \frac{m_{t_{Y_{1}}} + m_{t_{Y_{2}}}}{M(t_{Y_{1}}, t_{Y_{2}})} \frac{p_{Y_{1}Y_{2}}^{2}}{2\mu_{Y_{1}Y_{2}}} + V_{Y_{1}Y_{2}}^{s=-2} + \left(m(t_{Y_{1}}) + m(t_{Y_{2}}) - 2m_{\Lambda}\right)$$
system of (A-2)N + 2Y

S=-2 Hamiltonian in Jacobi Coordinates

 \Rightarrow we distinguish three parts of the Hamiltonian:

$$H_{Y_{1}Y_{2}} = \sum_{i < j=1}^{A-2} \left(\frac{2p_{ij}^{2}}{M(t_{Y_{1}}, t_{Y_{2}})} + V_{ij}^{s=0} \right) \\ + \sum_{i=1}^{A-2} \left(\frac{m_{N} + m(t_{Y_{1}})}{M(t_{Y_{1}}, t_{Y_{2}})} \frac{p_{iY_{1}}^{2}}{2\mu_{iY_{1}}} + V_{iY_{1}}^{s=-1} + \frac{m_{N} + m(t_{Y_{2}})}{M(t_{Y_{1}}, t_{Y_{2}})} \frac{p_{iY_{2}}^{2}}{2\mu_{iY_{2}}} + V_{iY_{2}}^{s=-1} \right) \\ + \frac{m_{t_{Y_{1}}} + m_{t_{Y_{2}}}}{M(t_{Y_{1}}, t_{Y_{2}})} \frac{p_{Y_{1}Y_{2}}^{2}}{2\mu_{Y_{1}Y_{2}}} + V_{Y_{1}Y_{2}}^{s=-2} + \left(m(t_{Y_{1}}) + m(t_{Y_{2}}) - 2m_{\Lambda}\right)$$
system of (A-2)N + 2Y

$$H_{\Xi} = \sum_{i < j=1}^{A-1} \left(\frac{2p_{ij}^2}{M(\Xi)} + V_{ij}^{s=0} \right) + \sum_{i=1}^{A-1} \left(\frac{m_N + m_{\Xi}}{M(\Xi)} \frac{p_{\Xi i}^2}{2\mu_{\Xi i}} + V_{\Xi i}^{s=-2} \right) + \left(m_{\Xi} + m_N - 2m_{\Lambda} \right)$$
system of (A-1)N + Ξ

$$H_{Y_1Y_2-\Xi N}^{S=-2} = \sum_{i=1}^{A-1} V_{Y_1Y_2-\Xi i}^{S=-2}$$

transition Hamiltonian

Evaluating Hamiltonian Matrix Elements

• for evaluating, e.g. $\langle \alpha^{*(Y_1Y_2)} | H_{Y_1Y_2} | \alpha^{*(Y_1Y_2)} \rangle$ we need to transform to other bases

• basis truncation:

$$\mathcal{N} = \mathcal{N}_{A-2} + N_{Y_1Y_2} + 2n_{\lambda} + \lambda \leq \mathcal{N}_{max} \Rightarrow E_b = E_b(\omega, \mathcal{N}_{max})$$

require $\mathcal{N}_{max} \rightarrow \infty$ extrapolation

• all bases states + trans. coefficients are independent of interactions and HO- ω \Rightarrow enable a series of calculations with different interactions, a range of HO- ω and \mathcal{N}_{max}

study chiral forces

extract converged E_h

Results for ${}^{6}_{\Lambda\Lambda}$ He, ${}^{5}_{\Lambda\Lambda}$ He, ${}^{4}_{\Lambda\Lambda}$ H

(H. Le, J. Haidenbauer, U.-G. Meißner, A. Nogga in preparation)

$^{~~6}_{\Lambda\Lambda}\text{He}(0^{+},\!0)$

• for all calculations use:

- NN : N⁴LO⁺(450), $\lambda_{NN} = 1.6 \text{ fm}^{-1}$ (P. Reinert et al. EPJA 54 (2018))
- YN : NLO19(650), $\lambda_{YN} = 0.87 \, \text{fm}^{-1}$

→ reproduce separation energies of ${}^{4}_{\Lambda}$ He(1⁺), ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li, but slightly underbind ${}^{4}_{\Lambda}$ He(0⁺) H. Le et al., EPJA 56 (2020)

• YY : LO(600), NLO19(600) $1.4 \le \lambda_{YY} \le 3.0 \text{ fm}^{-1}$

study effects of SRG-YY evolution

- separation-energy difference: $\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}He) = B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}He) 2B_{\Lambda}({}^{5}_{\Lambda}He)$ $= 2E({}^{5}_{\Lambda}He) E({}^{4}He) E_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}He)$
 - contains information about ΛΛ interaction strength, spin-dependent part of Λ-core interactions, core distortions

M. Danysz et al., NP 49 (1963). E. Hiyama et al., PRC 66 (2002)

$^{6}_{\Lambda\Lambda}$ He(0+,0)

inschaf

• separation-energy difference: $\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}He) = 2E({}^{5}_{\Lambda}He) - E({}^{4}He) - E_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}He)$

- NLO lead to smaller $\Delta B_{\Lambda\Lambda}$ and P_{Ξ}
- (no simple one-to-one connection between $\Delta B_{\Lambda\Lambda}$ and P_{Ξ})

 λ_{YY} [fm⁻¹]

 $5 \int \mathbf{He}\left(\frac{1}{2}^+, \frac{1}{2}\right)$

use spin-averaged \overline{B}_{Λ} (Danysz, Hiyama) $\overline{B}_{\Lambda}({}^{4}_{\Lambda}\mathsf{He}) = \frac{1}{4}B_{\Lambda}({}^{4}_{\Lambda}\mathsf{He},0^{+}) + \frac{3}{4}B_{\Lambda}({}^{4}_{\Lambda}\mathsf{He},1^{+})$

effect of SRG-induced YYN forces on $\Delta B_{\Lambda\Lambda}$ is minor

LO(600), $\lambda_{YY} = 2.4 \, \text{fm}^{-1}$

3.5

ΔB_{ΛΛ}(⁵He) [MeV]

1.5

 ${}^{5}_{\Lambda\Lambda} \textbf{He}\big(\frac{1}{2}^+,\frac{1}{2}\big)$

- → use spin-averaged \overline{B}_{Λ} (Danysz, Hiyama) $\overline{B}_{\Lambda}({}^{4}_{\Lambda}\text{He}) = \frac{1}{4}B_{\Lambda}({}^{4}_{\Lambda}\text{He},0^{+}) + \frac{3}{4}B_{\Lambda}({}^{4}_{\Lambda}\text{He},1^{+})$
- effect of SRG-induced YYN forces on $\Delta B_{\Lambda\Lambda}$ is minor
- large $\Lambda\Lambda$ -separation energy difference: $\Delta B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{5}\text{He}) > \Delta B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}\text{He})$
- FY calculations: $\Delta B_{\Lambda\Lambda}({}^{5}_{\Lambda\Lambda}\text{He}) < \Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}\text{He})$ (I. Filikhin, A. Gal NPA 707 (2002)

- $P_{\Lambda\Sigma}, P_{\Sigma\Sigma}, P_{\Xi}$ are not very sensitive to SRG YY
- LO predicts significantly larger P_{Ξ}

λ_{YY}	Y	Y-NLO(60)0)	YY-LO(600)			
fm^{-1}	$P_{\Lambda\Sigma}$	$P_{\Sigma\Sigma}$	P_{Ξ}	$P_{\Lambda\Sigma}$	$P_{\Sigma\Sigma}$	P_{Ξ}	
1.4	0.61	0.07	0.4	0.53	0.02	1.25	
2.0	0.6	0.08	0.38	0.51	0.03	1.36	
3.0	0.57	0.08	0.23	0.51	0.05	1.35	

probabilities (%) of finding $\Sigma, \Sigma\Sigma, \Xi$ in ${}^{5}_{\Lambda\Lambda}$ He

 $P_{\Sigma}(^{4}_{\Lambda}\text{He}, \text{YN-NLO19}) = 0.43\%$

	$^{5}_{\Lambda\Lambda}\mathrm{He}$			$^{6}_{\Lambda\Lambda}{ m He}$		
	$P_{\Lambda\Sigma}$	P_{Ξ}	$B_{\Lambda\Lambda}$	$P_{\Lambda\Sigma}$	P_{Ξ}	$B_{\Lambda\Lambda}$
$NLO(\lambda_{YY} = 2.0)$	0.6	0.38	3.67 ± 0.03	0.13	0.07	7.62 ± 0.02
$LO(\lambda_{YY} = 2.0)$	0.51	1.36	4.53 ± 0.01	0.17	0.84	8.40 ± 0.02
mNDs^*			3.66	1.17	0.28	7.54

 $P_{\Sigma}(^{5}_{\Lambda}\text{He}, \text{YN-NLO19}) = 0.07 \%$

probabilities (%) of finding Σ, Ξ and $B_{\Lambda\Lambda}$ (MeV) in ${}^{5}_{\Lambda\Lambda}$ He, ${}^{6}_{\Lambda\Lambda}$ He * H. Nemura et al., PRL 94 (2005)

• $P_{\Xi}({}^{6}_{\Lambda\Lambda}\text{He}) < P_{\Xi}({}^{5}_{\Lambda\Lambda}\text{He}) \Rightarrow \Lambda\Lambda - \Xi N$ transition is suppressed in ${}^{6}_{\Lambda\Lambda}\text{He}$ B. F. Gibson PTPS 117, 339 (1994), E. Hiyama talk LEAP (2013) $^{4}_{\Lambda\Lambda}$ H(1⁺,0)

• Is ${}^{4}_{\Lambda\Lambda}$ H stable against the breakup to ${}^{3}_{\Lambda}$ H + Λ ?

NLO leads to a particle unstable ${}^{4}_{\Lambda\Lambda}$ H. LO results do not allow for a definite conclusion

Conclusions & outlook

- developed ab-initio Jacobi NCSM for $\Lambda\Lambda$ hypernuclei up to p-shell
- studied the predictions of χ YY LO and NLO for $^{6}_{\Lambda\Lambda}$ He, $^{5}_{\Lambda\Lambda}$ He, $^{4}_{\Lambda\Lambda}$ H
 - SRG YY evolution has minor effects on $\Delta B_{\Lambda\Lambda}$ and $P_{\Lambda\Sigma}$, $P_{\Sigma\Sigma}$
 - LO strongly overbinds $^{6}_{\Lambda\Lambda}$ He; NLO results are comparable to experiment
 - both interactions result in $B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}\text{He}) < B_{\Lambda\Lambda}({}^{5}_{\Lambda\Lambda}\text{He})$
 - NLO predicts a particle unstable $\frac{4}{\sqrt{3}}$ H, LO results do not allow for a clear conclusion yet
- need to investigate impacts of χ NN and YN interactions on $B_{\Lambda\Lambda}$
- inclusion of χ and SRG-induced 3N forces, SRG-induced YNN forces is in progress
 - provide meaningful constraints to improve YY interactions

Thank You!

31

Λp Phase shift

