Pole structure of $\Lambda(1405)$ reviewed Aleš Cieplý

Nuclear Physics Institute, Řež/Prague, Czechia

THEIA STRONG2020 seminar, December 16, 2020

- Outline: 1 Introduction
 - **2** Chirally motivated $\overline{K}N$ interactions
 - Operation of the second sec

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- One or two $\Lambda(1405)$ poles?
- **(**) Yet another $\overline{K}N$ model (preliminary!)
- Summary

Introduction

the enigmatic nature of $\Lambda(1405)$ keeps our interest for more than 60 years

- in 1959 Dalitz and Tuan predicted a subthreshold resonance in their K-matrix analysis of K^-p data; confirmed 2 years later in the $\pi\Sigma$ mass spectra in the $K^-p \longrightarrow \pi\pi\pi\Sigma$ reaction
- Λ(1405) 1/2⁻ is much lighter than N*(1535) and a potential spin-orbit partner Λ(1520) 3/2⁻ which is difficult to explain within a standard constituent quark model
- hadronic molecule, a loosely bound $\overline{K}N$ state? a pentaquark?
- most common interpretation $\overline{K}N$ quasi-bound state submerged in $\pi\Sigma$ continuum, a result of coupled channels $\pi\Sigma \overline{K}N$ dynamics
- unitary coupled channels approaches based on effective chiral Lagrangian generate two poles related to $\Lambda(1405)$ (Oller, Meißner in 2001)

More in reviews:

- T. Hyodo, D. Jido Prog. Part. Nucl. Phys. 67 (2012) 55
- M. Mai arXiv:2010.00056 [nucl-th]

Introduction

$\Lambda(1405)$ in experimental data on $\pi\Sigma$ mass distributions

relatively old *compatible* experiments: Thomas (1973), Hemingway (1984), ANKE (2008).

HADES (2013) would fit in nicely too.

new experiments: HADES (2013) - $pp \longrightarrow pK^+ \pi\Sigma$ CLAS (2013) - $\gamma p \longrightarrow K^+ \pi\Sigma$ J-PARC (2016) - $K^-d \longrightarrow n\pi\Sigma$ future - weak decays of heavy hadrons, e.g. $\Lambda_c \longrightarrow \pi^+ MB$, $MB = \pi\Sigma$ or $\bar{K}N$

M. Mai, U.-G. Meißner - Eur. Phys. J. A 51 (2015) 30

Introduction

$\Lambda(1405)$ theory outreach:

theoretical models developed to describe the $\bar{K}N$ system at energies close to threshold, dominated by the $\Lambda(1405)$ resonance $\implies \bar{K}N$ amplitudes

 $\downarrow \downarrow \downarrow \downarrow$

$\bar{K}NN \ \bar{K}NNN$ few-body systems

? narrow measurable states interpretation of K^-pp structures observed by FINUDA@DA Φ NE, DISTO@Saclay, E15@J-PARC

kaonic deuterium atom predictions for the SIDDHARTA-2 experiment

Fadeeev type and variational calculations

 $\downarrow \downarrow \downarrow \downarrow$

\bar{K} -nucleus interaction

strongly attractive and absorptive

 $V_{
m opt}(
ho) \sim t_{ar{K}N}(
ho) \,
ho$

? optical potential depth:

phenomenology V_{opt} =(150-200) MeV chiral models V_{opt} =(50-60) MeV

? existence of sufficiently narrow K^- -nuclear bound states

related issue: kaon propagation in hot and dense nuclear matter heavy ion collisions, kaon condensation, neutron stars structure

Chirally motivated K^-N interactions

 $\bar{K}N - \pi\Sigma$ system (+ add-ons, mostly more *MB*) meson octet - baryon octet coupled channels interactions

involved channels	$\pi \Lambda$	$\pi\Sigma$	ĒΝ	$\eta \Lambda$	$\eta \Sigma$	KΞ
thresholds (MeV)	1250	1330	1435	1660	1740	1810

adding the meson singlet for ηN , $\eta' N$ - P. Bruns, A.C., NPA 992 (2019) 121630

- strongly interacting multichannel system with an s-wave resonance, the $\Lambda(1405)$, just below the K^-p threshold
- modern theoretical treatment based on effective chiral Lagrangians
- effective potentials constructed to match the chiral meson-baryon amplitudes up to LO or NLO order
- Lippmann-Schwinger (or Bethe-Salpeter) equation to sum the major part of the perturbation series
- low energies around threshold only s-wave considered in most approaches

N. Kaiser, P.B. Siegel, W. Weise - Nucl. Phys. A 594 (1995) 325 Schematic picture:

Some NLO LECs can be fixed by GMO mass splitting formulas and by a relation to the πN sigma term,

$$\sigma_{\pi N} = -2m_\pi^2(2b_0 + b_D + b_F)$$

イロト 不得 トイヨト イヨト

-

effective separable potentials constructed to match the chiral amplitudes

$$egin{aligned} &\mathcal{V}_{ij}(k,k';\sqrt{s})=g_i(k^2)\ v_{ij}(\sqrt{s})\ g_j(k'^2)\ &v_{ij}(\sqrt{s})=-rac{C_{ij}(\sqrt{s})}{4\pi f_i f_j}\ \sqrt{rac{M_iM_j}{s}} \end{aligned}$$

- energy dependent couplings C_{ij} determined by the chiral SU(3) symmetry
- the formfactors $g_j(k) = 1/[1 + (k/\alpha_j)^2]$ account naturally for the off-shell effects with the inverse ranges α_j fitted to the low energy $\bar{K}N$ data

Lippmann-Schwinger equation used to solve exactly the loop series

$$T = V + V G T$$

$$F_{ij}(k, k'; \sqrt{s}) = g_i(k^2) f_{ij}(\sqrt{s}) g_j(k'^2)$$
$$f_{ij}(\sqrt{s}) = \left[(1 - v \cdot G(\sqrt{s}))^{-1} \cdot v \right]_{ij}$$

with a loop Green function (in a free space)

$$G_n(\sqrt{s}) = -4\pi \int \frac{d^3p}{(2\pi)^3} \frac{g_n^2(p^2)}{k_n^2 - p^2 + i0} = \frac{(\alpha_n + ik_n)^2}{2\alpha_n} \left[g_n(k_n)\right]^2$$

nuclear medium treatment

$$G_n(\sqrt{s}) = -4\pi \int_{\Omega_i(\rho)} \frac{d^3p}{(2\pi)^3} \frac{g_n^2(\rho^2)}{k_n^2 - p^2 - \prod_i(\omega_i, E_i, \vec{p}; \rho) + i0}$$

- Π_i represents a sum of meson and baryon self-energies in channel *i*
- $\Pi_{\bar{K}} \sim F_{\bar{K}N} \rho \Rightarrow$ selfconsistent treatment required

- Kyoto-Munich (KM)
 Y. Ikeda, T. Hyodo, W. Weise, Nucl. Phys. A 881 (2012) 98
- Murcia (M₁, M₁₁)
 Z. H. Guo, J. A. Oller, Phys. Rev. C 87 (2013) 035202
- Bonn (B₂, B₄)
 M. Mai, U.-G. Meißner Eur. Phys. J. A 51 (2015) 30
- Prague (P)
 A. C., J. Smejkal, Nucl. Phys. A 881 (2012) 115
- Barcelona (BCN)
 A. Feijoo, V. Magas, À. Ramos, Phys. Rev. C 99 (2019) 035211

Model parameters (couplings, inverse interaction ranges or subtraction constants) fixed in fits to low energy K^-p data (and more in some cases).

Comparative analysis of the first four approaches presented in A. C., M. Mai, U.-G. Meißner, J. Smejkal - Nucl. Phys. A 954 (2016) 17

K^-p data (at and above threshold)

low energy cross sections:

threshold branching ratios:

$$\gamma = \frac{\Gamma(K^- \rho \to \pi^+ \Sigma^-)}{\Gamma(K^- \rho \to \pi^- \Sigma^+)} = 2.36 \pm 0.04$$

$$R_{\rm c} = \frac{\Gamma(K^- p \rightarrow {\rm charged})}{\Gamma(K^- p \rightarrow {\rm all})} = 0.664 \pm 0.011$$

$$R_{\rm n} = \frac{\Gamma(K^- \rho \to \pi^0 \Lambda)}{\Gamma(K^- \rho \to \rm neutral)} = 0.189 \pm 0.015$$

kaonic hydrogen:

$$\Delta E_N(1s) = 283 \pm 36(stat.) \pm 6(syst.) \text{ eV}$$

 $\Gamma(1s) = 541 \pm 89(stat.) \pm 22(syst.) \text{ eV}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Model predictions - $\Lambda(1405)$ resonance

Hyodo, Jido - Prog. Part. Nucl. Phys. 67 (2012) 55

A.C., Mai, Meißner, Smejkal - NPA 954 (2016) 17

- the higher pole around 1425 MeV couples more strongly to KN, the lower pole is much further from the real axis and has larger coupling to πΣ
- the data are not very sensitive to the position of the $\pi\Sigma$ related pole
- illustrative picture: $\overline{K}N$ bound state submerged in $\pi\Sigma$ continuum

Model predictions - $\Lambda(1405)$ resonance

all recent (year \geq 2000) $\Lambda(1405)$ poles predictions

M. Mai - arXiv:2010.00056 [nucl-th]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Model predictions - K^-N amplitudes (free space)

 K^-p and K^-n elastic amplitudes

 B_2 (dotted, purple), B_4 (dot-dashed, red), M_I (dashed, blue), M_{II} (long-dashed, green), P (dot-long-dashed, violet), BCN (dot-dot-dashed, brown), KM (continuous, black)

Model predictions - K^-N amplitudes (free space)

For a comparison, uncertainty bands provided in Y. Ikeda, T. Hyodo, W. Weise, Nucl. Phys. A 881 (2012) 98

bands calculated by varying the KM_{NLO} model parameters to get the K^-p scattering length within SIDDHARTA experimental error bars

the theoretical ambiguities below the $\bar{K}N$ threshold are much larger than indicated by such uncertainty bounds provided for a specific model and a given χ^2 local minimum !!!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Model predictions - K^-N amplitudes (free space)

the I = 1 sector is not restricted by the fitted experimental data leading to varied predictions for the K^-n scattering amplitude

New data needed !!!

- new precise data for the isovector $K^- p \longrightarrow \pi^0 \Lambda$ and isoscalar $K^- p \longrightarrow \pi^0 \Sigma^0$ reactions at as low energies as possible are highly desired
- πΣ mass spectra at subthreshold energies should help provided we understand the process dynamics
- the $K^0_L p \longrightarrow K^+ \Xi^0$ reaction (I=1) to be measured at KLF@JLAB
- decays of heavy baryons into channels including MB(S=-1), e.g. $\Lambda_b \longrightarrow J/\Psi \Lambda(1405)$, measured at LHC
- kaonic deuterium measurement (AMADEUS, Frascati) will also add to the picture

Where do the poles come from? (demonstration for the Prague approach) The amplitude has poles for complex energies z (equal to \sqrt{s} on the real axis) if a determinant of the inverse matrix is equal to zero,

 $\det|f^{-1}(z)| = \det|v^{-1}(z) - G(z)| = 0$

The origin of the poles can be traced to the

zero coupling limit: $C_{ii} = 0$ for $i \neq j$ (interchannel couplings switched off)

for $C_{i,j\neq i} = 0$ the condition for a pole of the amplitude becomes

$$\prod_n [1/v_{nn}(z) - G_n(z)] = 0$$

There will be a pole in channel *n* at a Riemann sheet [+/-] (phys./unphys.) if the following condition is satisfied for any complex energy *z*:

$$\frac{4\pi f_n^2}{C_{nn}(z)} \frac{z}{M_n} + \frac{(\alpha_n + \mathrm{i}k_n)^2}{2\alpha_n} \left[g_n(k_n)\right]^2 = 0$$

Only states with nonzero diagonal couplings $C_{i,j=i}$ can generate the poles!

What channels have nonzero diagonal couplings?

For simplicity, we first look only at the leading order WT term couplings

Sample results for the P_{WT} model:

sector	channel	ZCL state	resonance
	$\pi\Sigma$	resonance	Λ(1405)
<i>I</i> = 0	ĒΝ	bound	Λ(1405)
	KΞ	bound	۸(1670)
	$\pi\Sigma$	resonance	—
I = 1	ĒΝ	virtual	K^-n amplitude
			$\pi\Sigma$ photoproduction (CLAS data)
	KΞ	virtual	Σ(1750)

In general, the exact situation (existence of a ZCL pole in a given channel) depends on the model parameters (subtraction constants, NLO contributions that generate sufficiently large couplings C_{nn})

Notation: Each Riemann sheet is labeled by the signs of the imaginary parts of the CMS momenta in the meson-baryon channels ordered according to their thresholds. The poles may move from one Riemann sheet to another one by crossing the real axis through the branch cuts.

For I = 0 the RS [++++] is the physical sheet, for I = 1 it is the [+++++] RS. The Riemann sheets accessed by crossing the real axis in between the $\pi\Sigma$ and $\bar{K}N$ thresholds are [-+++] and [--+++], respectively.

R.J. Eden, J.R. Taylor (1964):

- Each pole observed in the ZCL will develop into multiplets of shadow poles observed at Riemann sheets with the same original sign (+/-) in the respective channel.
- Physical observables are affected by the pole that is closest to the physical region in the limit of physical (fully switched on) interchannel couplings.
- This dominant pole and any other shadow pole may switch roles when the model parameters are varied, the couplings of various channels to a specific pole evolve was well.

Pole movements upon scaling the nondiagonal interchannel couplings

 $C_{i,j\neq i}$ replaced by $x \cdot C_{i,j\neq i}$

 P_{NLO} model, left panel: isoscalar states, right panel: isovector states The pole positions in the physical limit are emphasized with large empty circles. The triangles at the top of the real axis indicate the channel thresholds.

resonance	models / ZCL channels					
	P _{NLO}	KM _{NLO}	Mı	Mıı	B_2	B_4
$\Lambda_1(1405)$	$\pi\Sigma$	$\pi\Sigma$	$\pi\Sigma$	$\pi\Sigma$	$\pi\Sigma$	πΣ
$\Lambda_{2}(1405)$	ĒΝ	ĒΝ	ĒΝ	$\eta \Lambda$	$\eta \Lambda$	ĒΝ
Λ(1670)	KΞ	_	KΞ	KΞ	—	KΞ
$\bar{K}N(I=1)$	ĒΝ	$\eta \Sigma$	ĒΝ	ĒΝ	—	_
Σ(1750)	KΞ	_	_	KΞ	_	KΞ

Pole content of the considered models

 M_{II} and B_2 models generate the $\Lambda_2(1405)$ pole from the $\eta\Lambda$ ZCL bound state.

earlier reports on the isovector $\overline{K}N$ related pole:

- J. Oller, U.-G. Meißner Phys. Lett. B 500 (2001) 263
- D. Jido, J.A. Oller, E. Oset, A. Ramos, U.-G. Meißner NPA 725 (2003) 181
- A.C., E. Friedman, A. Gal, D. Gazda, J. Mareš PRC 84 (2011) 045206
- A.C., J. Smejkal Few Body Syst. 54 (2013) 1183

The multichannel chiral approaches generate two $\Lambda(1405)$ poles !!! questioned recently in J. Révai - Few Body Syst. 59 (2018) 49

$$T(p',p;\sqrt{s}) = V(p',p;\sqrt{s}) + \int d^3q V(p',q;\sqrt{s}) \frac{2\mu}{k^2 - q^2 + i\epsilon} T(q,p;\sqrt{s})$$

on-shell factorisation: the loop momentum q in the argument of T and V replaced by its on-shell value k, then T and V pulled out of the integral equivalent to introducing tad-pole contributions to the interaction kernel V that can be absorbed into a renormalisation of the meson-baryon vertex

J. Révai put this procedure under question demonstrating that the $\pi\Sigma$ related pole disappears if the off-shell part of the loop function integral is not dropped

- very specific form of the potential V adopted
- non-relativistic treatment of the MB energies and momenta

only Weinberg-Tomozawa term considered, taken in a form

$$\langle q_i | V_{ij} | q_j \rangle = u_i(q_i) \langle q_i | v_{ij} | q_j \rangle u_j(q_j) = u_i(q_i) \lambda_{ij} \left(m_i + \frac{q_i^2}{2\mu_i} + m_j + \frac{q_j^2}{2\mu_j} \right) u_j(q_j)$$

with the central piece equivalent to the on-shell form $(2\sqrt{s} - M_i - M_j)$ and a dipole form-factor $u_i(q) = [1/(1 + q^2/\beta_i^2)]^2$

> parameters β_i fitted to the $\bar{K}N$ data for both choices result: one pole vs two poles However, ...

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

P. Bruns, A.C. - Nucl. Phys. A 996 (2020) 121702

We were able to rewrite the Révai's algebraic T-matrix solution as

$$T_{\mathrm{on}}(k) = u(k) \left[\tilde{W}_{\mathrm{JR}}^{-1} - G_{\mathrm{on}} \right]^{-1} u(k)$$

where the effective potential $\tilde{W}_{\rm JR}$ is again a real coupled-channel matrix depending only on the on-shell momenta k^2 ,

$$ilde{W}_{
m JR} = \left[1 + \lambda I_0
ight]^{-1} \left(ar{\gamma}\lambda + \lambdaar{\gamma} - \lambda I_1\lambda
ight) \left[1 + I_0\lambda
ight]^{-1}$$
 ,

where $\gamma(q) = rac{q^2}{2\mu} + m$, $ar{\gamma} = \gamma(k)$ and the tad-pole integrals are

$$I_n := \frac{4\pi}{(2\mu)^n} \int_0^\infty dq \, q^2(u(q))^2 (q^2 - k^2)^n$$

In this form, the on-shell approximation is quite transparent, equivalent to neglecting the integrals I_n .

The JR amplitude gives scattering lengths that do not vanish in the SU(3) chiral limit! Demonstration: one channel case, at threshold $(k = 0 \text{ and } \bar{\gamma} = m)$

$$a_{0+}^{
m JR}=-4\pi^2\mu\left[rac{(1+\lambda l_0)^2}{2\lambda m-\lambda l_1\lambda}+4\pi^2\murac{5eta}{16}
ight]^{-1}$$

on-shell approximation: $l_0, l_1 \rightarrow 0, a_{0+} \sim \mathcal{O}(m)$ off-shell effects in: $l_{0,1} \neq 0, a_{0+} \sim \mathcal{O}(m^0)$

The JR approach violates the chiral symmetry!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The origin of this violation can be traced to the use of non-relativistic kinematics.

One or two $\Lambda(1405)$ poles?

A proper relativistic treatment is possible, though the respective formulas are much more complicated.

The effective relativistic potential, a counterpart of $ilde{W}_{\mathrm{JR}}$, can be written as

$$\tilde{W}_{BC}(\sqrt{s}) = \sqrt{\frac{E_B + M}{\mu}} \frac{\mathcal{W}(\sqrt{s})}{4(2\pi)^3 \sqrt{s}} \left[1 + (I_B(\beta) - I_M(\beta)) \frac{\mathcal{W}(\sqrt{s})}{2\sqrt{s}} \right]^{-1} \sqrt{\frac{E_B + M}{\mu}}$$

 $\bar{K}N(I = 0)$ effective kernels: W_{WT} (dotted), \tilde{W}_{JR} (dashed), \tilde{W}_{BC} (blue)

the corresponding amplitudes satisfy the chiral symmetry strictures, $a_{0+,\rm BC}^{\bar{K}N,I=0}\sim \mathcal{O}(m)$

Model parameters, inverse ranges β_j , determined in fits to kaonic hydrogen data, K^-p threshold branching ratios and cross sections. The ratio of the meson decay constants fixed as $F_K/F_{\pi} = 1.193^{n-1}$ providing two models BC₁ and BC₂.

Pole positions (in MeV) on the [-,+] and [-,-,+] Riemann sheets for the I = 0 and I = 1 sectors, respectively.

model	$z_1 \ (I = 0)$	$z_2 (I = 0)$	$z_3 \ (I=1)$
CS	(1432.8, -24.9)	(1370.8, -54.2)	(1408.9,-199.7)
JR	(1422.9, -25.7)	—	(1106.5, -71.6)
BC_1	(1439.9, -23.3)	(1316.0, -6.76)	(1361.1, -166.9)
BC_2	(1437.8, -20.9)	(1251.1, 0.0)	(1337.4, -117.3)

Note: There are two poles but their positions are not where we would like to have them.

A.V. Anisovich et al. - Eur. Phys. J. A 56 (2020) 5, 139

partial wave analysis of low-energy data on K^-p and $\pi\Sigma$ interactions:

- bubble chamber data on $K^- p \longrightarrow \pi \pi \pi \Sigma$
- $K^- p \longrightarrow \pi^0 \pi^0 \Lambda$, $\pi^0 \pi^0 \Sigma^0$ from Crystal Ball at BNL
- $\gamma p \longrightarrow K^+ \pi \Sigma$ from CLAS at JLab
- K⁻p total cross sections
- kaonic hydrogen from SIDDHARTA at Frascati

Two equivalent solutions found:

- one pole $z = (1421 \pm 3) i(23 \pm 3)$ MeV, SU(3) singlet; compatible with the quark-model predictions
- two poles with $z_1 = (1423 \pm 3) i(20 \pm 3)$ MeV, SU(3) octet, and a second pole fixed at $z_1 = 1380 i90$ MeV, SU(3) singlet; compatible with an earlier analysis by D. Jido et al. Nucl. Phys. A 725 (2003) 181

Yet another $\bar{K}N$ model (preliminary!)

a new Prague model developed together with P. Bruns

- based on effective chiral Lagrangian (manifestly Lorentz invariant)
- improved treatment of the Born terms
- $\eta\Lambda$ and $\eta\Sigma^0$ cross sections included to cover the $\Lambda(1670)$ region
- 12 parameters fitted to the data: b_0 , b_F , 4 d's, 6 inverse ranges defining the Yamaguchi form factors that regularize the loop function integrals

fit quality: $\chi^2/{
m dof} pprox 1.3$

Pole positions (isoscalar sector):

A D N A 目 N A E N A E N A B N A C N

$$\begin{array}{l} \Lambda(1405) \; z_{\pi\Sigma}[-,+,+,+] = (1353,\,-43) \; {\sf MeV} \\ z_{\bar{K}N}[-,+,+,+] = (1428,\,-24) \; {\sf MeV} \\ \Lambda(1670) \; z_{K\Xi}[-,-,-,+] = (1677,\,-14) \; {\sf MeV} \end{array}$$

Yet another $\bar{K}N$ model (preliminary!)

 $\eta \Lambda$ and $\eta \Sigma^0$ data reproduction

Our aim: study the SU(3) flavor structure of the poles assigned to $\Lambda(1405)$ and $\Lambda(1670)$ in some detail

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Summary

- The up-to-date (NLO) chirally motivated $\bar{K}N$ models provide very different predictions for the K^-N amplitudes at subthreshold energies.
- Two A(1405) poles in the chiral models. Pole movements on the complex energy manifold give us additional insights on the the dynamically generated meson-baryon resonances. The origin of the poles can be tracked to the nonzero diagonal inter-channel couplings.
- Available experimental data can be reproduced about equally well by models with just one pole in the Λ(1405) region.
- Despite our progress over the last 60 years, the character of Λ(1405) resonance is still not reliably established.

Have a peaceful holidays!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00