

Content

2. Procedures of Averaging

3. First Physics Application

4. Live Presentation of current Status

2020

Wo body: 3H - 3He

We Vici

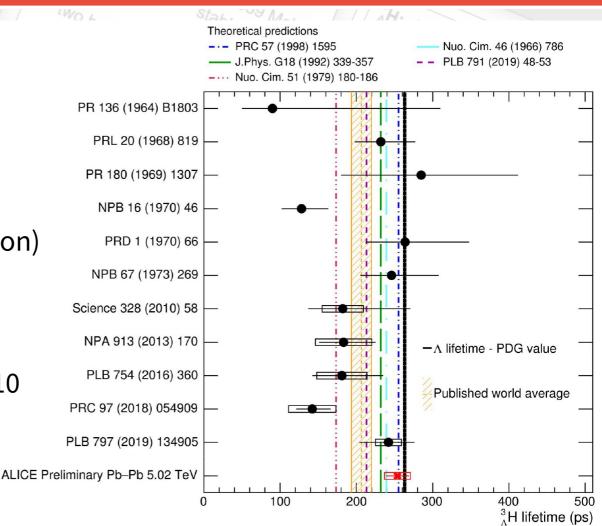
Method

stable

M. Juric

M

12.01.21


TH: A binding energy

Nding energy [MeV]

0.11 (syst.)

1. Why a Database – Hypertriton Lifetime

- Data situation:
- history of almost 60 years
- different exp. approaches (Emulsion, Bubble Ch., Heavy Ion)
 - asymmetric errors
- missing systematics before 2010
- large progress in last years
- conflicts within the data?

F. Mazzaschi, "Status of the hypertriton lifetime from ALICE"

Hypertriton @A1

12.01.21

1. Our Goal for a Database

Collect data:

- complete collection of hypernuclear data
- include methods, references, ...

Combine data:

- evaluate averages
- estimate and treat errors (scalings, corrections?)

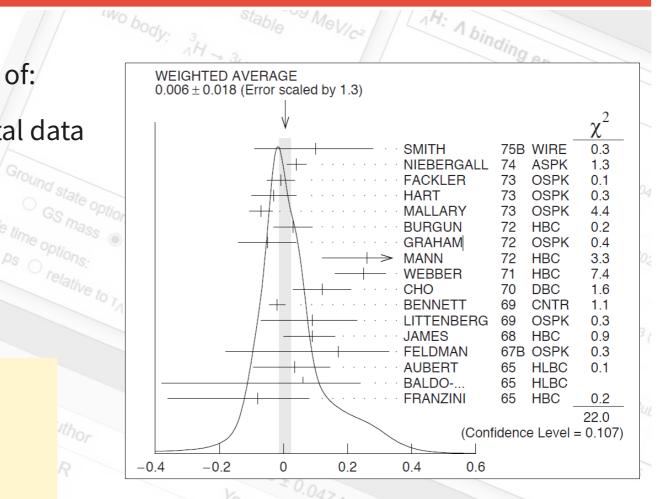
Public availability:

- accessible to everyone via web
- interactive user interface to assess individual data sets
- generate downloadable content (plots, ideograms, datasets, refs.)

Expert Groupoverseeing the project

12.01.21

M


1. Key Feature: Ideograms

What an ideogram consists of:

- visualisation of experimental data (and the errors!)
- resulting average
- probability curve

\rightarrow within seconds:

- overview on data situation
- spot discrepancies

stable

PDG: "A typical ideogram", **Review of Particle Physics**

M

12.01.21

1. Content of the Database

Properties of a hypernucleus inside the data base:

2.43

- 1. binding energy
- 2. excitation energies
- 3. lifetime

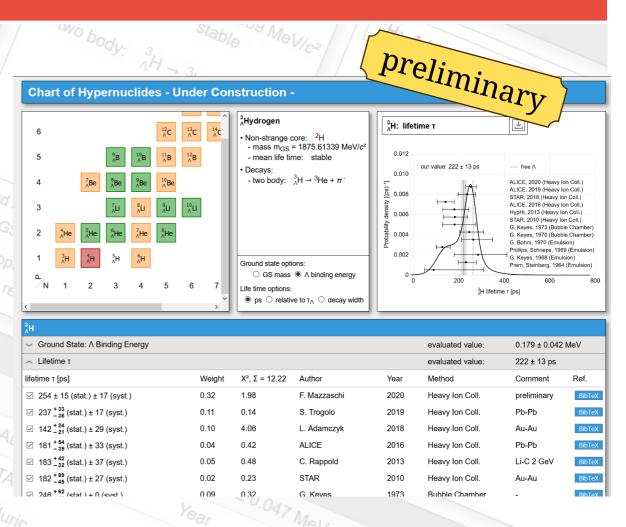
4. branching ratios (planned)

5. non-strange core

consist of published measurements

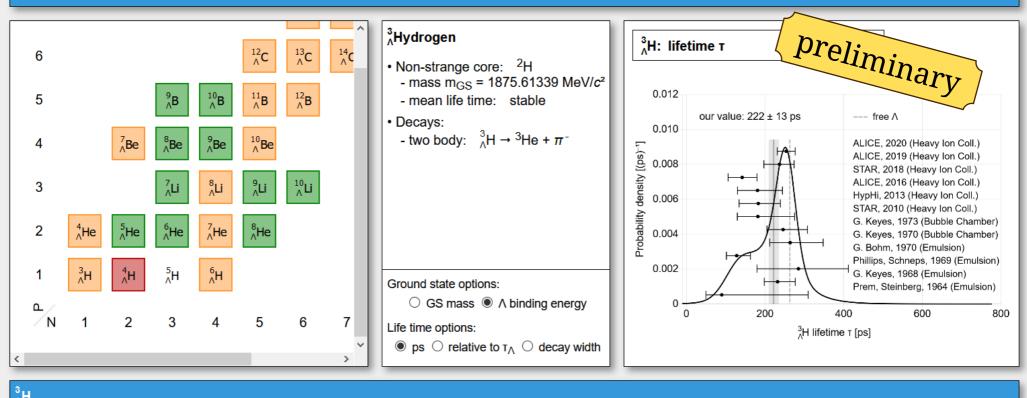
← literature values, mass and lifetime

Data base


M

12.01.21

AH: A binding energy


1. Where we are so far

- basic user interface exists
- averaging procedures are implemented
- ideograms can be generated and downloaded
- url on university server¹ (newest version offline)
- collected data for hypertriton's lifetime and binding energy

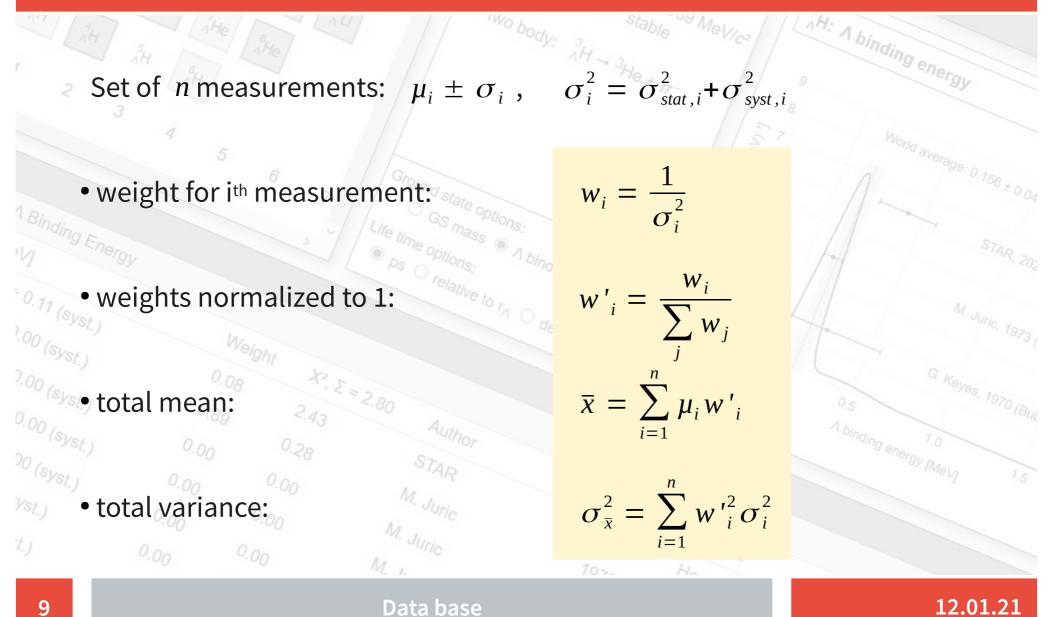
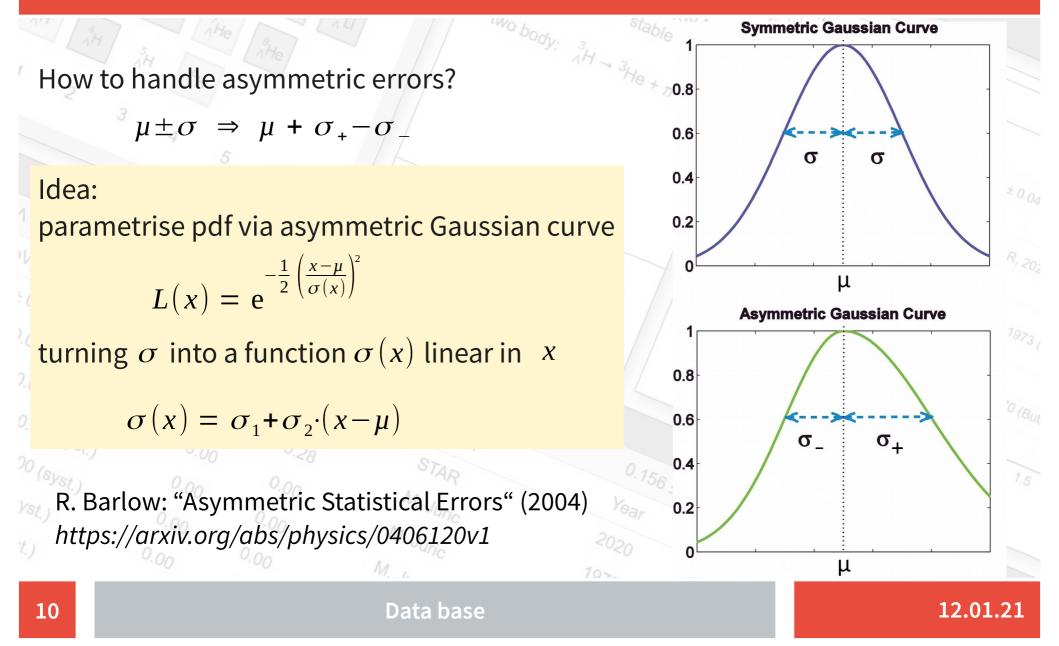

1: https://www.blogs.uni-mainz.de/fb08-nuclear-physics/research/hypernuclei-database/

Chart of Hypernuclides - Under Construction -



Λ ^Π							
 Ground State: Λ Binding Energy 					evaluated value:	0.179 ± 0.042 MeV	
~ Lifetime τ					evaluated value:	222 ± 13 ps	
lifetime τ [ps]	Weight	X², Σ = 12.22	Author	Year	Method	Comment	Ref.
☑ 254 ± 15 (stat.) ± 17 (syst.)	0.32	1.98	F. Mazzaschi	2020	Heavy Ion Coll.	preliminary	BibTeX
✓ 237 ⁺³³ ₋₃₆ (stat.) ± 17 (syst.)	0.11	0.14	S. Trogolo	2019	Heavy Ion Coll.	Pb-Pb	BibTeX
✓ 142 ⁺²⁴ ₋₂₁ (stat.) ± 29 (syst.)	0.10	4.06	L. Adamczyk	2018	Heavy Ion Coll.	Au-Au	BibTeX
✓ 181 ⁺⁵⁴ ₋₃₉ (stat.) ± 33 (syst.)	0.04	0.42	ALICE	2016	Heavy Ion Coll.	Pb-Pb	BibTeX
✓ 183 ⁺⁴² ₋₃₂ (stat.) ± 37 (syst.)	0.05	0.48	C. Rappold	2013	Heavy Ion Coll.	Li-C 2 GeV	BibTeX
✓ 182 ⁺⁸⁹ ₋₄₅ (stat.) ± 27 (syst.)	0.02	0.23	STAR	2010	Heavy Ion Coll.	Au-Au	BibTeX
\checkmark 246 $^{+62}_{-41}$ (stat.) ± 0 (syst.)	0.09	0.32	G. Keyes	1973	Bubble Chamber	-	BibTeX
✓ 264 ^{+ 84} _{- 52} (stat.) ± 0 (syst.)	0.07	0.70	G. Keyes	1970	Bubble Chamber	-	BibTeX
✓ 128 ⁺³⁵ ₋₂₆ (stat.) ± 0 (syst.)	0.06	3.16	G. Bohm	1970	Emulsion	-	BibTeX

2. Averaging Procedures – Error weighted Mean

2. Averaging Procedures – Asymmetric Errors

2. Averaging Procedures – Asymmetric Errors

How to choose σ_1 and σ_2 within $\sigma(x) = \sigma_1 + \sigma_2 \cdot (x - \mu)$?

Restriction from Gaussian shaped function: $g(x) = e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$

$$g(\mu - \sigma) = g(\mu + \sigma) = e^{-\frac{1}{2}} \Rightarrow L(\mu - \sigma_{-}) \stackrel{!}{=} L(\mu + \sigma_{+}) \stackrel{!}{=} e^{-\frac{1}{2}}$$

Solution given by

$$\sigma_1 = \frac{2\sigma_+\sigma_-}{\sigma_++\sigma_-} \qquad \sigma_2 = \frac{\sigma_+-\sigma_-}{\sigma_++\sigma_-}$$

H: A binding energy

12.01.21

Then the $[\mu - \sigma_-, \mu + \sigma_+]$ interval is equivalent to a common 1σ interval,

→ both cover a probability of 68.27 %

2. Asymmetric Errors – Mean Value

Set of *n* measurements: $\mu_i + \sigma_{+,i} - \sigma_{-,i}$, $\sigma_{\pm}^2 = \sigma_{stat,\pm}^2 + \sigma_{syst,\pm}^2$

• Mean value \overline{x} can be found with:

$$\overline{x}\sum_{i} w_{i} = \sum_{i} \mu_{i} w_{i} \qquad \qquad w_{i} = \frac{\sigma_{1i}}{(\sigma_{1i} + \sigma_{2i}(\overline{x} - \mu_{i}))^{3}}$$

→ numerical solution via iterations:

depends on mean

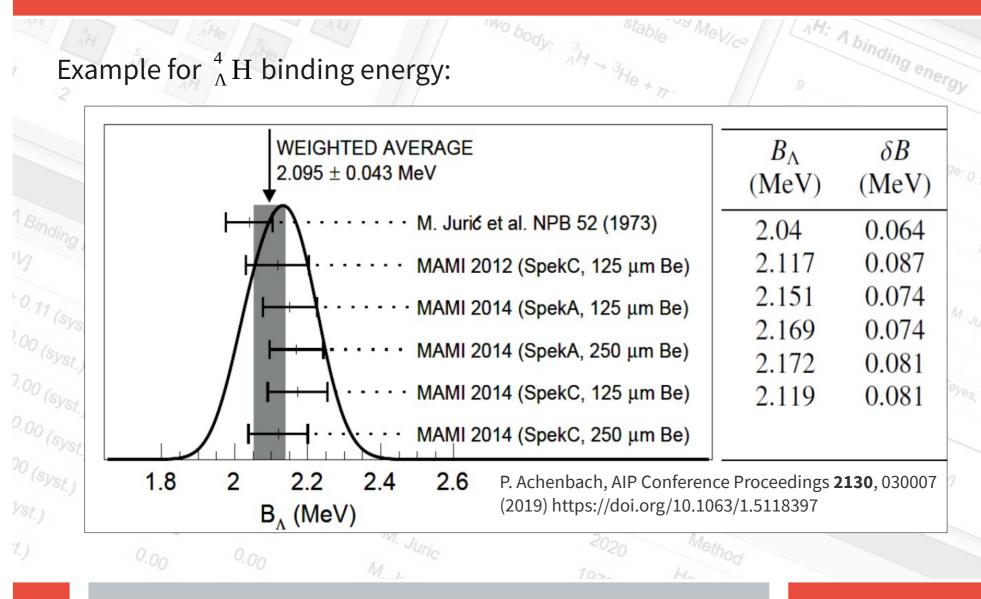
AH: A binding ener

• Initial value $\overline{x}_0 = \frac{1}{n} \sum_{i=0}^n \mu_i$

• Accuracy of 10^{-5} can be achieved in about 5 iterations

2. Asymmetric Errors – Error Interval

log-likelihood function:
$$lnL(x) = -\frac{1}{2} \sum_{i=1}^{n} \left(\frac{x-\mu_i}{\sigma_i(x)}\right)^2$$


- *lnL* has maximum at \bar{x}
- from there, find both $e^{\overline{2}}$ points, equivalent to $lnL(\overline{x}) lnL(\sigma_{\pm}) = -\frac{1}{2}$
- initial values $\sigma_{\pm,0} = \left(\sum_{i=1}^{\infty} \frac{1}{\sigma_{\pm,i}^2}\right)^{-\frac{1}{2}}$
- errors with accuracy 10^{-3} already found after 3 iterations!

application in online calculator possible!

AH: A binding energy

2. How to treat Shared Systematic Errors

Example for ${}^{4}_{\Lambda}$ H binding energy:

AH: A binding energy

12.01.21

Y Mevic

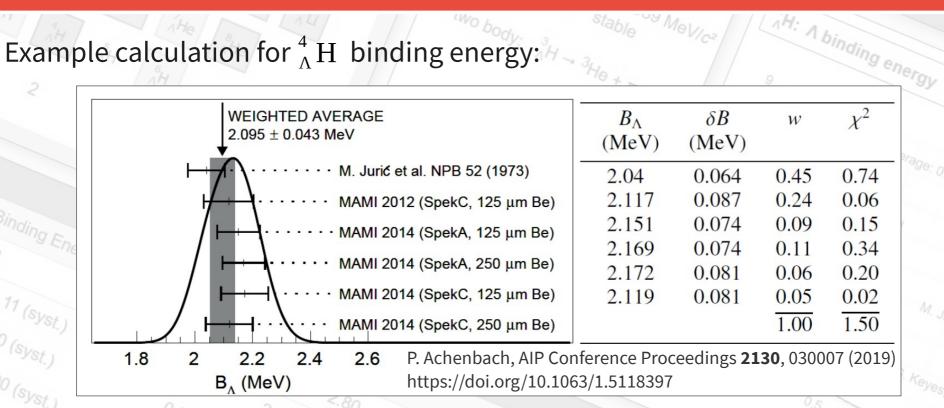
2. Treatment of Shared Systematic Errors

Set of measurements with same systematic error $\sigma_{\scriptscriptstyle syst}$

$$\mu_i \pm \sigma_{stat,i} \pm \sigma_{syst}$$

 \rightarrow modified systematic error: σ_{syst}

"This procedure has the advantage that, with the modified systematic errors [...], each measurement may be treated as independent and averaged in the usual way with other data." – PDG


 $\sigma_{syst} \cdot \sigma_{stat,i} \left(\sum_{j} \frac{1}{\sigma_{stat,i}^2} \right)^{\frac{1}{2}}$

inside the database, measurements are grouped in settings

H: A binding ener

2. Shared Systematic Errors – Example

Example calculation for ${}^{4}_{\Lambda}$ H binding energy:

stable

• error treatment avoids overestimation of MAMI's influence:

→ weights distributed almost 1:1 instead of 1:5

no underestimation of resulting error

2. How to treat published Averages?

Example: Jurič's hypertriton binding energy $B_A = 130 \pm 50 \text{ keV}$

Published value consists of four different single values: Hypernucleus Decay mode No of events $B_1 \pm \Delta B_2$

14	Hypernacieus	Decay mode		(MeV)	
	³ _A H	$\pi^{-} + {}^{1}H + {}^{2}H$	24	0.23 ± 0.11	ahin.
N		π^{-} + ³ He	58	0.06 ± 0.11 🤞	2
:0		total	82	0.15 ± 0.08	ΛH
0.7	1		0		7

Combination to mean not trivial:

3.2.1. The ${}^{3}_{\Lambda}H$ hypernucleus

From the observation of 82 examples of ${}^{3}_{\Lambda}$ H, the binding energy of this hypernucleus is found to be 0.15 ± 0.08 MeV. An accurate determination of the binding energy of the ${}^{3}_{\Lambda}$ H hypernucleus is of great importance to estimate the strength of the Λ N interaction in the singlet state. Combining the result obtained in this experiment with the data compiled by Bohm et al. [2], reanalysed using the methods and selection criteria defined in the present work, the best estimate for the binding energy of ${}^{3}_{\Lambda}$ H is found to be $B_{\Lambda} = 0.13 \pm 0.05$ MeV.

M. Jurič, Nuclear Physics B, Vol. 52, 1, p 1 – 30 (1973)

binding ene

 $B_{\Lambda} \pm \Delta B_{\Lambda}$

Bohm et al.^{a)}

 0.01 ± 0.07

(MeV)

12.01.21

2. How to treat published Averages – Options

H: A binding ener

12.01.21

Options for adopting the values to the database:

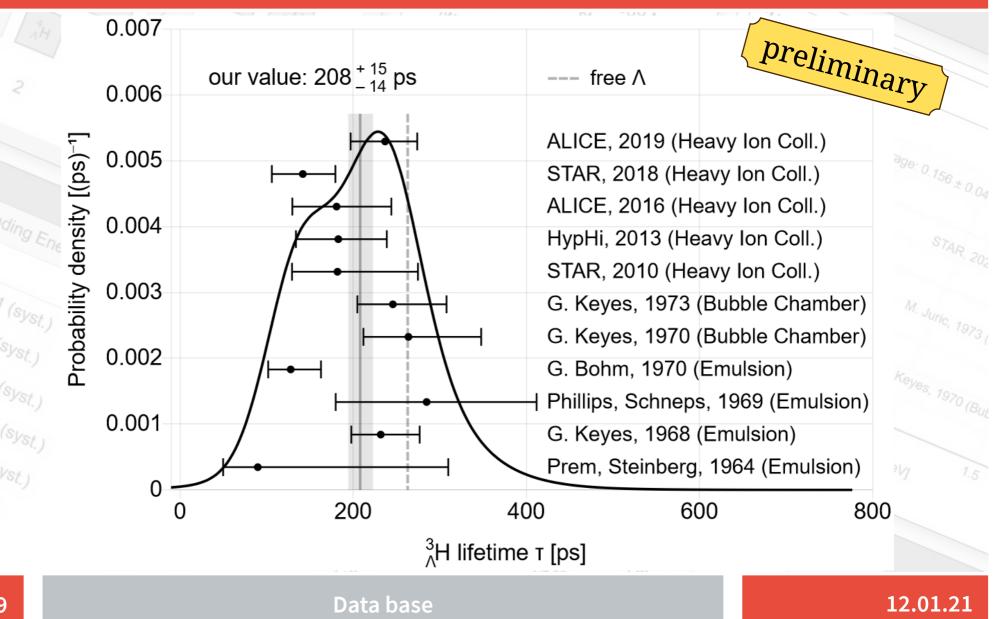
1. only take underlying measurements

includes 2 and 3 body channels of Jurič and Bohm

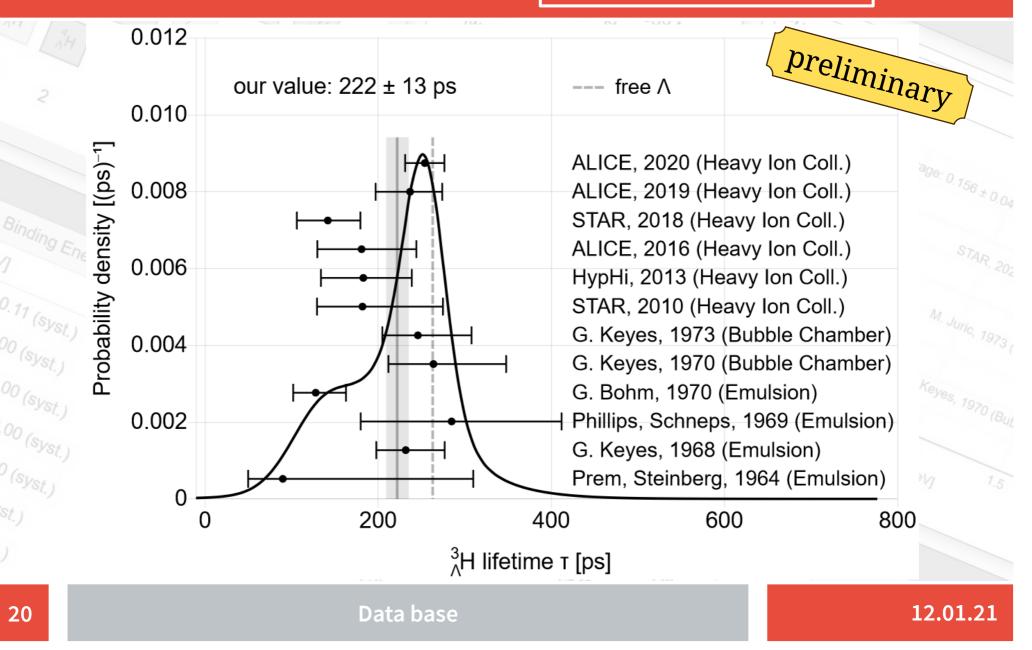
Problem: final mean value can't be reproduced

2. only take mean value:

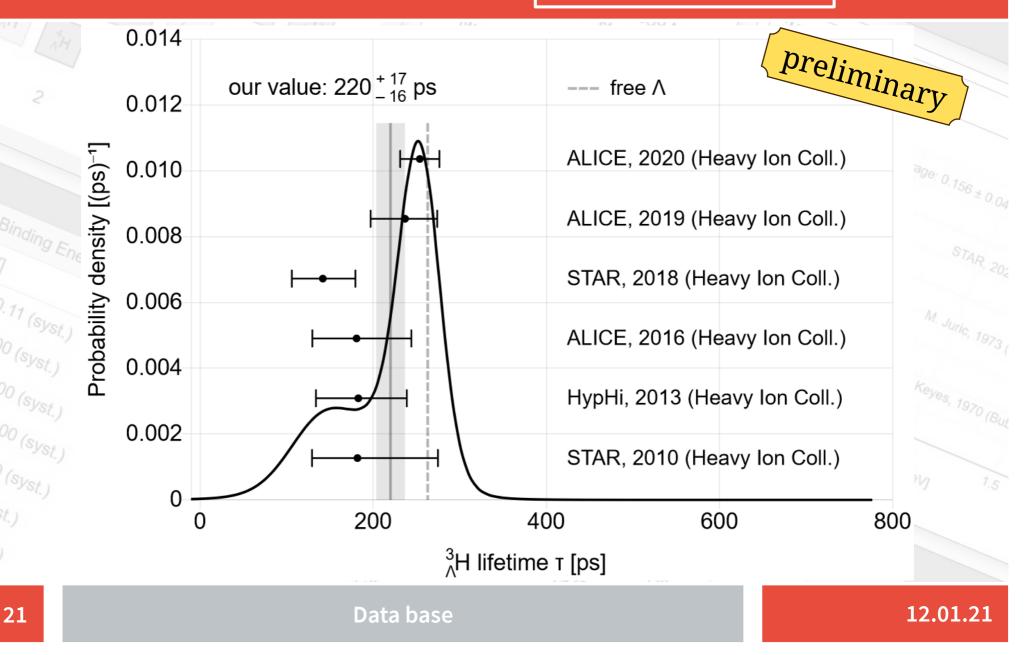
Problem: loss of information on underlying measurements **3. take all values:**

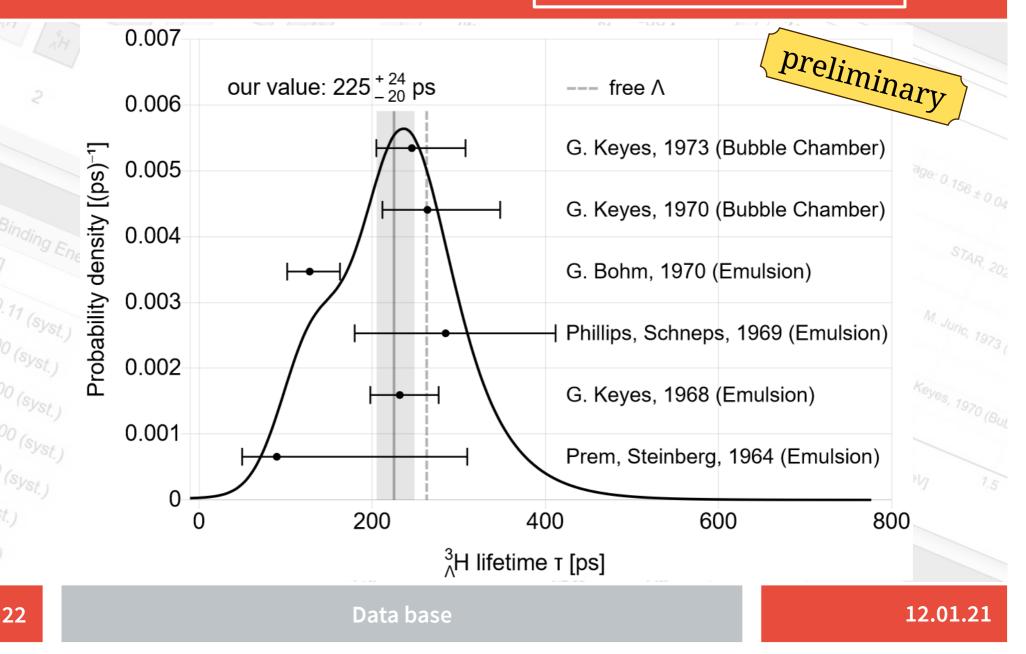

Data base

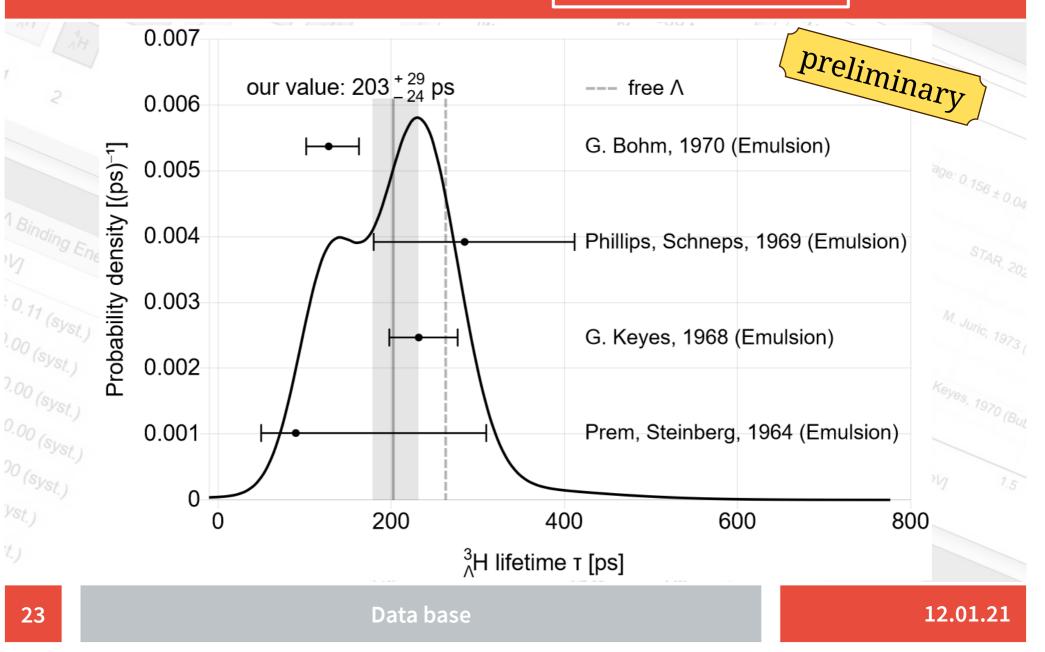
Problem: assure that no measurement appears twice in average!


go for 3^{rd} option \rightarrow measurements grouped in collections

3. First Results: Hypertriton Lifetime


Status 2019


3. The Hypertriton Lifetime New ALICE Value


3. The Hypertriton Lifetime Heavy Ion only

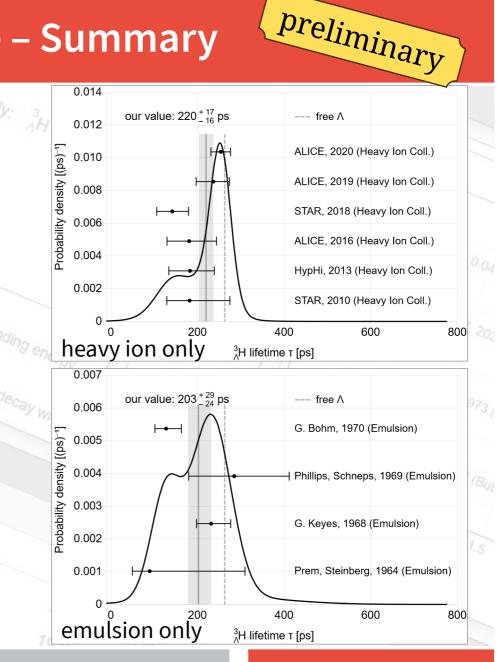
3. The Hypertriton Lifetime | Without Heavy Ion

3. The Hypertriton Lifetime Emulsion only

3. The Hypertriton Lifetime – Summary

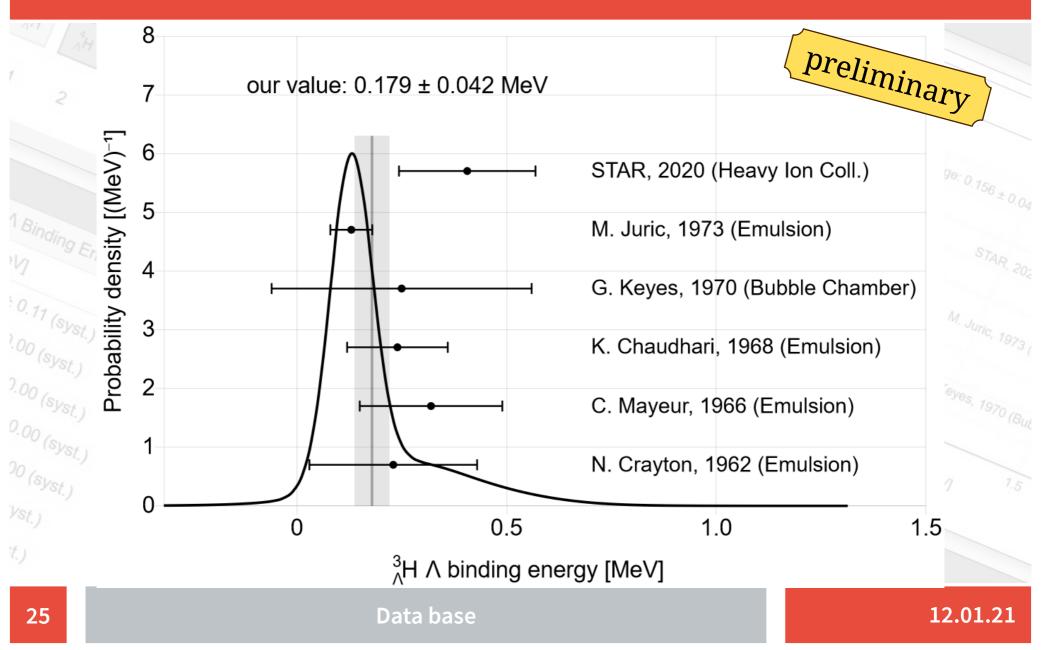
• new ALICE value dominates average (weigth of 1/3)

• our total average value is:


 $\tau_{_{\Lambda}H} = 222 \pm 13 \text{ ps}$

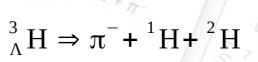
• heavy ion only result almost the same: $\tau_{_{\Lambda}^{3}H} = 220_{-16}^{+17} \text{ ps}$

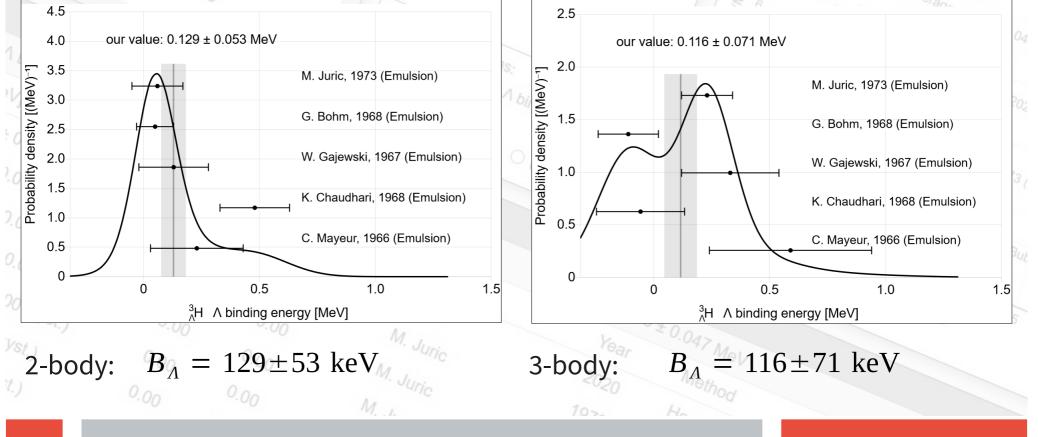
both, heavy ion only and emulsion only


→ hidden sytsematics?

show a double structure:

12.01.21

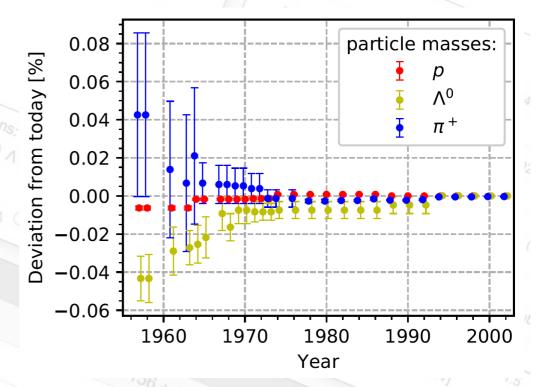

3. Other Result: Hypertriton Binding Energy


3. Hypertriton Binding Energy

Comparing 2-body and 3-body decays in emulsion data:

 $^{3}_{\Lambda} H \Rightarrow \pi^{-} + ^{3} H$

3. Outlook – Recalibration of Historical Data?


Particle masses have changed over the decades $\ldots \rightarrow$ **PDG values:**

Deviation of **0.02** % in Λ mass equals to 220 keV in total!

Influence on nuclei like hypertriton?

Correction by P. Liu et al.¹ on Juric's hypertriton measurement:

```
150 keV \rightarrow 270 keV
```


→ Find agreement for consistent correction!

¹: Chinese Physics C Vol. 37, No. 1 (2019) 010201

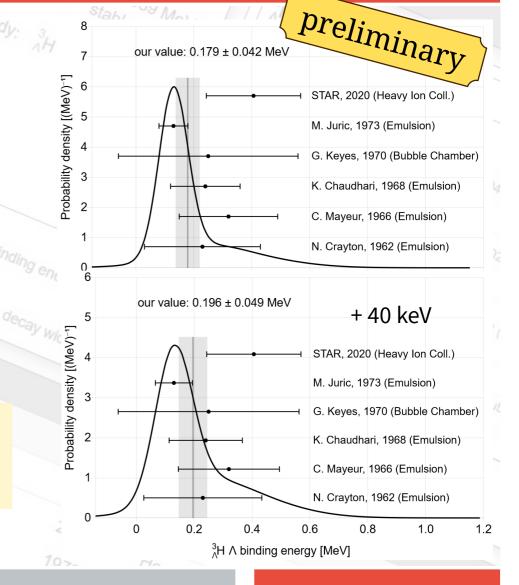
3. Outlook – Systematic Error for Historical Data?

Suggestion by Davis¹: $\sigma_{syst} = 40 \, \text{keV}$

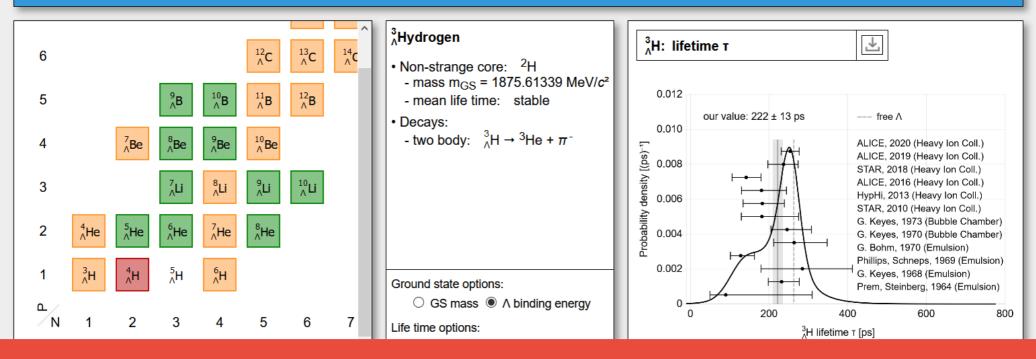
Example: hypertriton binding energy

dominated by Juric's value

 $B_A = 130 \pm 50 \,\mathrm{keV}$


with additional systematic error

 $B_A = 130 \pm 64 \,\mathrm{keV}$ (total error)


→ comparably large change in average:

 $\overline{B}_{A} = 179 \pm 42 \text{ keV} \Rightarrow 196 \pm 49 \text{ keV}$

¹: D. H. Davis, Nuclear Physics A 754 (2005) 3c–13c

Chart of Hypernuclides - Under Construction -

4. Live Presentation

lifetime T [ps]	Weight	X², Σ = 12.22	Author	Year	Method	Comment	Ref.
☑ 254 ± 15 (stat.) ± 17 (syst.)	0.32	1.98	F. Mazzaschi	2020	Heavy Ion Coll.	preliminary	BibTeX
	0.11	0.14	S. Trogolo	2019	Heavy Ion Coll.	Pb-Pb	BibTeX
✓ 142 ⁺²⁴ ₋₂₁ (stat.) ± 29 (syst.)	0.10	4.06	L. Adamczyk	2018	Heavy Ion Coll.	Au-Au	BibTeX
✓ 181 ⁺⁵⁴ ₋₃₉ (stat.) ± 33 (syst.)	0.04	0.42	ALICE	2016	Heavy Ion Coll.	Pb-Pb	BibTeX
✓ 183 ⁺⁴² ₋₃₂ (stat.) ± 37 (syst.)	0.05	0.48	C. Rappold	2013	Heavy Ion Coll.	Li-C 2 GeV	BibTeX
✓ 182 ⁺⁸⁹ ₋₄₅ (stat.) ± 27 (syst.)	0.02	0.23	STAR	2010	Heavy Ion Coll.	Au-Au	BibTeX
\checkmark 246 $^{+62}_{-41}$ (stat.) ± 0 (syst.)	0.09	0.32	G. Keyes	1973	Bubble Chamber	-	BibTeX
	0.07	0.70	G. Keyes	1970	Bubble Chamber	-	BibTeX
$✓$ 128 $^{+35}_{-26}$ (stat.) ± 0 (syst.)	0.06	3.16	G. Bohm	1970	Emulsion	-	BibTeX

Invitation to join Expert Group

- Preparatory group was established after THEIA Workshop in Speyer: P. Achenbach, J. Millener, S.N. Nakamura, H. Tamura
- After database goes online this group will be extended by experimentalists from Europe, Japan & U.S. (up to maybe 10)
 - → Form an expert group covering experimental methods such as:
- Emulsion technique
- Heavy-ion collision
- Electroproduction missing-mass spectroscopy
- Decay-pion spectroscopy
- γ-spectroscopy
- Strangeness exchange spectroscopy

This expert group should oversee the hypernuclear database entries

- Everybody from this community can volunteer
- Theory advise and review was suggested (A. Gal volunteered)
- Dissemination of data tables is planned

Invitation to join Expert Group

- Preparatory group was established after THEIA Workshop in Speyer: P. Achenbach, J. Millener, S.N. Nakamura, H. Tamura
- After database goes online this group will be extended by experimentalists from Europe, Japan & U.S. (up to maybe 10)

→ Form an expert group cover

Emulsion tech
Heavy-ion coll
Electroproduc

Thank you for your attention!

• Strangeness exchange spectroscopy

5:

ctroscopy

This expert group should oversee the hypernuclear database entries

- Everybody from this community can volunteer
- Theory advise and review was suggested (A. Gal volunteered)
- Dissemination of data tables is planned

4. Tables – "measurement"

	property	description	
r	value	pubished mean value	
	errorstatp	errora.	
	errorstatm	errors in plus and minus direction	
1.0	errorsystp	minus dir	56±0.0
Bind	errorsystm	airection	TAD
N	nevents	number of observed events (optional)	'' ^{T,} 20
0.17	reference	table with information about author etc.	^{ric,} 1973
.00 (sj	include	boolean for contribution to world average	C/3
.00 (s	setting	label measurements with same systematics (optional)	1970 (B
).00 (s	method	description of experimental approach	
DO (Sys	comment	additional note (optional)	1.5
Vst.)	compiler	person who submitted the measurement (optional)	
t.)	compiledate	date of submission (optional)	
33		Data base	12.01.21

4. Tables – "collection"

property	description	
value	pubished mean value	
errorstatp	errore:	
property	description	
method	description of experimental approach (optional)	
more measuren	nents and/or collections	9,
nevents	number of observed events (optional)	
reference	table with information about author etc.	ic,
include	boolean for contribution to world average	Sec.
setting	label measurements with same systematics (optional)	19;
method	description of experimental approach	
comment	additional note (optional)	
compiler	person who submitted the measurement (optional)	
compiledate	date of submission (optional)	

4. Tables – "reference" and "collaboration"

reference:

"Wo body: 3 AH - 3He + Tr-
description
person who performed and/or published the measuremen
table for corresponding collaboration
when article was published
explicit BibTeX code

12.01.21

collaboration:

olla	boration:0.08	K ² , S = 2.80	1973 (
SV	property	description	(B _{UL}
st r	name	collaboration name	1.5
ι	url	link to collaboration's webpage	
	0.00 0.00	Unic 2020 Method	