Application of Equation of Motion Phonon Method for Calculations of Hypernuclei

Petr Veselý Nuclear Physics Institute, Czech Academy of Sciences gemma.ujf.cas.cz/~p.vesely/

Joint THEIA-STRONG2020 and JAEA/Mainz REIMEI Web-Seminar, THEIA, January 2021

Motivation

Work on development of **many-body model**(s) suitable for description of **nuclear and hypernuclear structure** which aim to describe wide range of hypernuclei including medium-size & heavy systems.

This model can be used in calculations of **hypernuclear production** – especially the hypernuclei whose production is planned by experimentalists in close future (${}^{40}_{\Lambda}$ K, ${}^{48}_{\Lambda}$ K, ${}^{208}_{\Lambda}$ TI).

Outline of the seminar:

- Electroproduction of Hypernuclei
- Equation of Motion Phonon Method (EMPM) in the Calculations of Nuclei
- Extension of **EMPM** for the Calculations of **Hypernuclei**
- **Results** EMPM Demonstrated on Calculations of ${}^{5}_{\Lambda}$ He, ${}^{17}_{\Lambda}$ O, ${}^{16}_{\Lambda}$ O, ${}^{16}_{\Lambda}$ N
- **Summary** and Future Plans

Electroproduction of Hypernuclei

Hypernuclear production:

- Elementary process of electroproduction: $p(e,e' K^{+}) \Lambda$
- Kinematics of the reaction
- Information about (many-body) nuclear & hypernuclear structure
- Information about the AN(N) interactions

All "ingredients" important for description of hypernuclear production.

 $\frac{d^{3}\sigma}{dE_{e}'d\Omega_{e}'d\Omega_{\kappa}} = \Gamma \left[\frac{d\sigma_{U}}{d\Omega_{\kappa}} + \varepsilon_{L} \frac{d\sigma_{L}}{d\Omega_{\kappa}} + \varepsilon \frac{d\sigma_{P}}{d\Omega_{\kappa}} \cos 2\varphi_{\kappa} + \sqrt{2\varepsilon_{L}(1+\varepsilon)} \frac{d\sigma_{I}}{d\Omega_{\kappa}} \cos \varphi_{\kappa} \right]$

 $\frac{d\sigma_{U}}{d\Omega_{K}} = \frac{\beta}{2(2J_{A}+1)} \sum_{jm} \frac{1}{2j+1} \{|A_{jm}^{+1}|^{2} + |A_{jm}^{-1}|^{2}\},$ $\frac{d\sigma_{P}}{d\Omega_{K}} = -\frac{\beta}{2J_{A}+1} \sum_{jm} \frac{1}{2j+1} \operatorname{Re}\{A_{jm}^{+1}A_{jm}^{-1*}\},$ $\frac{d\sigma_{L}}{d\Omega_{K}} = \frac{\beta}{2J_{A}+1} \sum_{jm} \frac{1}{2j+1} |A_{jm}^{0}|^{2},$ $\frac{d\sigma_{I}}{d\Omega_{K}} = \frac{\beta}{2J_{A}+1} \sum_{jm} \frac{1}{2j+1} \operatorname{Re}\{A_{jm}^{0*}[A_{jm}^{+1}-A_{jm}^{-1}]\}$

Operator can be expressed in the second quantized form. We evaluate $(\Phi_H || [b_{\alpha'}^+ \otimes a_{\alpha}]^J || \Phi_A)$ nucleus hypernucleus annihilation **p** creation **A**

Transition amplitude $T_{\lambda}^{(1)} = \frac{Z}{[J_H]} \sum_{S\eta} \mathcal{F}_{\lambda\eta}^S \sum_{LM} \sum_{Jm} \mathcal{C}_{LMS\eta}^{Jm} \mathcal{C}_{J_AM_AJm}^{J_HM_H} (J_H || F_{LM} [Y_L \otimes \sigma^S]^J || J_A)$

 $\gamma_{\rm v}(P_{\rm \gamma}) + {\rm A}(P_{\rm A}) \longrightarrow {\rm H}(P_{\rm H}) + {\rm K}^+(P_{\rm K})$

Electroproduction of Hypernuclei

Hypernuclear production:

$$\frac{d^{3}\sigma}{dE'_{e}d\Omega'_{e}d\Omega_{\kappa}} = \Gamma \left[\frac{d\sigma_{U}}{d\Omega_{\kappa}} + \varepsilon_{L} \frac{d\sigma_{L}}{d\Omega_{\kappa}} + \varepsilon \frac{d\sigma_{P}}{d\Omega_{\kappa}} \cos 2\varphi_{\kappa} + \sqrt{2\varepsilon_{L}(1+\varepsilon)} \frac{d\sigma_{I}}{d\Omega_{\kappa}} \cos \varphi_{\kappa} \right]$$

 $\mathsf{M}_{\mu} = \langle \Psi_{\mathsf{H}} | \langle \chi_{\mathsf{K}} | \sum_{i=1}^{\mathbb{Z}} \hat{J}_{\mu}(j) | \chi_{\gamma} \rangle | \Psi_{\mathsf{A}} \rangle$

Fig. from M. Sotona, S. Frullani,

Prog. Theor. Phys. Suppl. 117, 151 (1994)

 $\left(\Phi_{H} \mid \mid [b_{\alpha'}^{+} \otimes a_{\alpha}]^{J} \mid \mid \Phi_{A} \right)$

 $\gamma_{\rm V}(P_{\rm X}) + {\rm A}(P_{\rm A}) \longrightarrow {\rm H}(P_{\rm H}) + {\rm K}^+(P_{\rm K})$

Study of the effects of the $\Lambda N(N)$ interactions & the used manybody model...

F. Cusanno et al., Phys. Rev. Lett. 103 (2009), 202501.

Equation of Motion Phonon Method

Equation of Motion Phonon Method (EMPM) was developed to study the structure of nuclei.

Hilbert space – divided into subspaces

HF – Hartree-Fock state (nucleons occupy lowest single-particle levels)
1p-1h = 1particle – 1hole excitation of HF
2p-2h = 2particle – 2hole excitation of HF

np-nh = n**particle** – n**hole** excitation of HF

Instead of multiple particle-hole excitations we can excite multiple TDA phonons

These basis sets are in general overcomplete!

We need to solve our Eigenvalue problem(s) in the **linearly independent subset**s of basis states.

Linear Algebra methods – e.g. Choleski method

 $HF \rightarrow TDA \rightarrow EMPM$

 $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus ... \oplus \mathcal{H}_n$

 $\mathcal{H}_0 = \{ |HF > \}$ $\mathcal{H}_1 = \{ O_{\nu_1}^{\dagger} | HF > \}$ $\mathcal{H}_2 = \{ O_{\nu_1}^{\dagger} O_{\nu_2}^{\dagger} | HF > \}$

 $\mathcal{H}_n = \left\{ O_{\nu_1}^{\dagger} O_{\nu_2}^{\dagger} \dots O_{\nu_n}^{\dagger} | HF > \right\}$

Equation of Motion Phonon Method

Equation of Motion Phonon Method (EMPM)

Equation of Motion (EoM) – recursive eq. to solve eigen-energies on each i-phonon subspace while knowing the (i-1)-phonon solution

 $< i, \beta_i | [\hat{H}, O_{\nu}^{\dagger}] | i - 1, \alpha_{i-1} > = (E_{\beta_i}^i - E_{\alpha_{i-1}}^{i-1}) < i, \beta_i | O_{\nu}^{\dagger} | i - 1, \alpha_{i-1} > 0$

non-diagonal blocks of **Hamiltonian** calculated from amplitudes $< i, \beta_i | O_{\nu}^{\dagger} | i - 1, \alpha_{i-1} >$ we diagonalize the total **Hamiltonian**

Nuclear ground state properties (⁴He,¹⁶O,⁴⁰Ca) _E

Nuclear energy spectra (²⁰⁸Pb)

2-phonon calculation of ²⁰⁸Pb – see in **Phys. Rev. C 92**, 054315 (2015), Chiral **NNLO**_{opt} + phenomenological **density dependent force**

nuclear density distribution

study of the dipole photoabsorption spectrum

$$B(E1, 0^+_{g.s.} \rightarrow 1^-_{exc.})$$

2-phonon configurations very important to describe richness of spectrum → **multifragmentation** of dipole resonance... we describe width of res.

most of 1⁻ states have configurations beyond 1ph

TABLE I. Phonon composition of the lowest twenty 1- states.

J_v^{π}	ω_{v} (MeV)	$ C_1^{(v)} ^2$	$ C_2^{(v)} ^2$
l_1^-	4.42780	0.00017	0.99983
1_{2}^{-}	4.67271	0.00083	0.99917
13	4.96609	0.00014	0.99986
14	5.46012	0.95558	0.04442
15	5.93408	0.03132	0.96868
16	6.05979	0.90712	0.09288
17	6.18594	0.05422	0.94578
18	6.25179	0.04936	0.95064
1,-	6.26285	0.05409	0.94591
1 ₁₀	6.27701	0.00310	0.99690
1,,	6.38869	0.15931	0.84069
112	6.40474	0.69907	0.30093
113	6.42531	0.03371	0.96629
14	6.43502	0.03215	0.96785
115	6.48971	0.86985	0.13015
116	6.53002	0.00956	0.99044
117	6.55127	0.00485	0.99515
118	6.64103	0.00346	0.99654
119	6.71925	0.01301	0.98699
120	6.73778	0.00058	0.99942

EMPM for odd-even nuclei

NN interaction - χ **NNLO**_{opt}

Phys. Rev. C 97, 034311 (2018)

extension of EMPM – formalism in Phys Rev C95, 034327 (2017)
Valence nucleon is coupled to N _{ph} -phonon excitations of the core

TABLE IV. Phonon composition of the low-lying states in ²³ O.						
J^{π}	E^{ν}	$ C_{0} ^{2}$	$ C_1 ^2$	$ C_2 ^2$		
$1/2_1^+$	0.000	0.9404	0.0594	0.0002		
$5/2_1^+$	2.973	0.0003	0.9948	0.0049		
$3/2_{1}^{+}$	4.244	0.9507	0.0478	0.0015		
$3/2_{1}^{-}$	4.688	0.9049	0.0905	0.0046		
$1/2_1^-$	4.827	0.9686	0.0307	0.0007		
$3/2^+_2$	4.880	0.0000	0.0000	1.0000		
$3/2_2^-$	4.996	0.0498	0.8645	0.0852		
$7/2_1^+$	5.159	0.0000	0.0000	1.0000		
$1/2_2^+$	5.181	0.0000	0.0000	1.0000		
$5/2^+_2$	5.468	0.0000	0.0000	1.0000		
$9/2_1^+$	6.218	0.0000	0.0000	1.0000		
$7/2_1^-$	6.452	0.0095	0.9374	0.0531		
$5/2_1^-$	6.482	0.0004	0.9924	0.0072		
$1/2_2^-$	6.583	0.0011	0.9930	0.0059		
$3/2_{3}^{-}$	6.633	0.0284	0.9656	0.0060		

Phonon composition of each state of ²³O

EMPM for Hypernuclei

EMPM extended on single- Λ hypernuclei

I)

hypernuclei with Λ in even-even nuclear cores

 $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus ... \oplus \mathcal{H}_n$

We **couple** creation particle of **Λ** with the |HF> and **(multi)phonon** excitations of |HF>

 $\begin{aligned} \mathcal{H}_0 &= \{c_p^{\dagger}|\mathrm{HF}>\} \\ \mathcal{H}_1 &= \{c_p^{\dagger}O_{\mu_1}^{\dagger}|\mathrm{HF}>\} \\ \mathcal{H}_2 &= \{c_p^{\dagger}O_{\mu_1}^{\dagger}O_{\nu_1}^{\dagger}|\mathrm{HF}>\} \end{aligned}$

We can apply this method to calculate structure of ⁵ , He, ¹⁷ , O, ⁴¹ , Ca, ⁴⁹ , Ca etc.

II)

hypernuclei with Λ in even-odd nuclear cores

 $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus ... \oplus \mathcal{H}_n$

We **couple AN TDA** states with |HF> and **(multi)phonon** excitations of |HF>

 $\begin{aligned} \mathcal{H}_{0} &= \{ R_{\nu}^{\dagger} | \mathrm{HF} > \} \\ \mathcal{H}_{1} &= \{ R_{\nu}^{\dagger} O_{\mu_{1}}^{\dagger} | \mathrm{HF} > \} \\ \mathcal{H}_{2} &= \{ R_{\nu}^{\dagger} O_{\mu_{1}}^{\dagger} O_{\nu_{1}}^{\dagger} | \mathrm{HF} > \} \end{aligned}$

We can apply this method to calculate structure of ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He, ${}^{16}_{\Lambda}$ N, ${}^{16}_{\Lambda}$ O, ${}^{40}_{\Lambda}$ K, ${}^{40}_{\Lambda}$ Ca, ${}^{48}_{\Lambda}$ K, ${}^{48}_{\Lambda}$ Ca etc.

Nuclei:HF \rightarrow TDA \rightarrow EMPMHypernuclei:p-n- Λ HF \rightarrow N Λ TDA \rightarrow ext. EMPM

p-n-A Hartree-Fock Method

p-n- Λ HF = Hartree-Fock method in the proton-neutron- Λ formalism

 diploma thesis of J. Pokorný "Three-body Interactions in Mean-Field Model of Nuclei and Hypernuclei", Czech Technical University, (2018)
 Phys. Scr. 94, 014006, (2019); Acta Phys. Pol. B Proc. Suppl. 12, 657, (2019)

We obtain: - single-particle levels of protons, neutrons and Λ

Single-particle Λ energies:

realistic chiral **NN+NNN** potential **NNLO**_{sat}

realistic chiral LO YN potential (Λ N- Λ N channel) with different regulator cut-off λ

N∧ Tamm-Dancoff

$N\Lambda TDA = Nucleon-\Lambda Tamm-Dancoff Approximation$

 diploma thesis of J. Pokorný "Three-body Interactions in Mean-Field Model of Nuclei and Hypernuclei", Czech Technical University, (2018)
 Phys. Scr. 94, 014006, (2019); Acta Phys. Pol. B Proc. Suppl. 12, 657, (2019)

Suitable for hypernuclei with Λ in even-odd nuclear cores

EMPM for Hypernuclei

EMPM extended on single- Λ hypernuclei

by pernuclei with Λ in **even-even nuclear cores**

 $\widehat{H} = \widehat{T}^N + \widehat{T}^\Lambda + \widehat{V}^{NN} + \widehat{V}^{NNN} + \widehat{V}^{\Lambda N} + \widehat{V}^{\Lambda NN} - \widehat{T}_{CM}.$

Within this formalism we can study ${}^{5}_{\Lambda}$ He, ${}^{17}_{\Lambda}$ O, ${}^{41}_{\Lambda}$ Ca, ${}^{49}_{\Lambda}$ Ca, ${}^{209}_{\Lambda}$ Pb ...

Our theoretical formalism:

$$\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus ... \oplus \mathcal{H}_n$$

$$\mathcal{H}_{0} = \{c_{p}^{\dagger}|\mathrm{HF}>\}$$
$$\mathcal{H}_{1} = \{c_{p}^{\dagger}O_{\mu_{1}}^{\dagger}|\mathrm{HF}>\}$$
$$\mathcal{H}_{2} = \{c_{p}^{\dagger}O_{\mu_{1}}^{\dagger}O_{\nu_{1}}^{\dagger}|\mathrm{HF}>\}$$

$$|\nu>=c_{\nu}^{\dagger}|\mathrm{HF}>$$

We construct the Hamiltonian matrix:

- 1) The diagonal block $\mathcal{H}_0 \times \mathcal{H}_0$ = s.p. Λ energies
- 2) The diagonal block $\mathcal{H}_1 \times \mathcal{H}_1$ = coupling of Λ to phonon exc. of core
- 3) The nondiagonal block $\mathcal{H}_0 \times \mathcal{H}_1 =$ not difficult to calculate

Diagonalization of whole matrix leads to **correlated states** \rightarrow they already cannot be interpreted as purely "**single-particle**" states of Λ .

Also energy spectrum can get much richer by inclusion configurations from **larger Hilbert space**.

EMPM for Hypernuclei

EMPM extended on single- Λ hypernuclei

It is more important to study such hypernuclei from the point of view

of experiment (production of hypernuclei ⁴_AH, ¹⁶_AO, ¹⁶_AN, ⁴⁰_AK, ⁴⁸_AK,...)

II) hypernuclei with Λ in even-odd nuclear cores

 $\widehat{H} = \widehat{T}^N + \widehat{T}^\Lambda + \widehat{V}^{NN} + \widehat{V}^{NNN} + \widehat{V}^{\Lambda N} + \widehat{V}^{\Lambda NN} - \widehat{T}_{CM}.$

Our theoretical formalism:

$$\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus ... \oplus \mathcal{H}_n$$

 $\mathcal{H}_{0} = \{ R_{\nu}^{\dagger} | \text{HF} > \}$ $\mathcal{H}_{1} = \{ R_{\nu}^{\dagger} O_{\mu_{1}}^{\dagger} | \text{HF} > \}$ $\mathcal{H}_{2} = \{ R_{\nu}^{\dagger} O_{\mu_{1}}^{\dagger} O_{\nu_{1}}^{\dagger} | \text{HF} > \}$

 $|\nu\rangle = R_{\nu}^{\dagger}|\mathrm{HF}\rangle$ We construct the **Hamiltonian** matrix: 1) The diagonal block $\mathcal{H}_0 \times \mathcal{H}_0 = \mathbf{N} \mathbf{\Lambda} \mathbf{T} \mathbf{D} \mathbf{A}$ energies $|\beta> = \sum_{\nu\mu} X^{\beta}_{\nu\mu} R^{\dagger}_{\nu} Q^{\dagger}_{\mu} |\text{HF}>$ 2) The diagonal block $\mathcal{H}_1 \times \mathcal{H}_1 =$ **Equation of Motion** 3) The nondiagonal block $\mathcal{H}_0 \times \mathcal{H}_1 =$ not difficult to calculate \mathcal{H}_1 \mathcal{H}_0 **Equation of Motion:** E⁽⁰⁾ Ho1 $\mathcal{A}X = EX$ A-matrix $\mathcal{A} = \langle \beta | [\hat{H}, R_{\nu}^{\dagger}] | \mu \rangle + E_{\mu} \langle \beta | R_{\nu}^{\dagger} | \mu \rangle$ E1(1) 0 E2(1) Eigen-value problem in an overcomplete E.1(1) non-orthogonal basis... $\overline{\mathcal{AD}C} = E\overline{\mathcal{D}C}$ **Eigen-value problem** in the **reduced space** (linearly independent subset of states) $-B_{A} = E_{i} + \varepsilon_{E}^{N}$ **D-matrix** = overlap matrix of the basis states (A.D) – must be hermitian

Hypernuclei with **single**-Λ particle: Hamiltonian

 $\widehat{H} = \widehat{T}^N + \widehat{T}^\Lambda + \widehat{V}^{NN} + \widehat{V}^{NNN} + \widehat{V}^{\Lambda N} + \widehat{V}^{\Lambda NN} - \widehat{T}_{CM}$

Example: NN(+NNN) potential

- phenomenological NN potential Brink-Boeker Nucl. Phys. A91, 1, (1967)
- realistic chiral NN potential NNLO_{opt} Phys. Rev. Lett. **110**, 192502, (2013)
- realistic chiral NN+NNN potential NNLO_{sat}
 Phys. Rev. C91, 051301(R), (2015)

 ΛN potential

phenomenological Gaussian **ΛN** potential Prog. Theor. Phys. **70**, 189, (1983)

 $v_{AN}(r) = v_{AN}^{0} e^{-(\tau/\beta_{AN})^{2}} (1 + \eta \sigma_{A} \cdot \sigma_{N}),$

 $v_{AN} = -38.19 \text{ MeV}$, $\beta_{AN} = 1.034 \text{ fm}$, $\eta = -0.1$.

 G-matrix effective ΛN potential derived from Juelich-A YN Prog. Theor. Phys. Suppl. 117, 361 (1994)

$$V_{AN}(r) = \sum_{i=1}^{3} (a_i + b_i k_{\rm F} + c_i k_{\rm F}^2) \exp[-r^2/\beta_i^2]$$

	$\beta_i(\text{fm})$	1.25	0.70	0.45
	a	-25.82	-389.4	859.0
^{1}E	Ь	-12.51	401.2	-303.2
	с	2.437	-136.0	188.8
⁸ E	a	-45.01	-296.6	1094.
	Ь	4.620	218.3	-504.6
	с	.7500	-92.50	230.0
1 <i>0</i>	a	-14.54	144.7	734.6
	Ь	3.615	27.50	76.37
	с	8750	-5.000	3.125
^{\$} 0	a	-25.91	248.1	615.3
	ь	5.410	210.9	-1260.
	с	.5000	-123.1	734.8

EMPM extended on single- Λ hypernuclei

EMPM extended on single- Λ hypernuclei

I) hypernuclei with Λ in even-even nuclear cores

5/2-7/2

 $1/2^{+}$

EMPM

E [MeV]

-10

HF

 $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus ... \oplus \mathcal{H}_n$ $\widehat{H} = \widehat{T}^N + \widehat{T}^\Lambda + \widehat{V}^{NN} + \widehat{V}^{NNN} + \widehat{V}^{\Lambda N} + \widehat{V}^{\Lambda NN} - \widehat{T}_{CM}$ realistic $\mathcal{H}_0 = \{c_p^{\dagger}|\mathrm{HF}>\}$ $v_{AN}(r) = v_{AN}^0 e^{-(\tau/\beta_{AN})^2} (1 + \eta \boldsymbol{\sigma}_A \cdot \boldsymbol{\sigma}_N),$ chiral $v_{AN} = -38.19 \text{ MeV}, \quad \beta_{AN} = 1.034 \text{ fm}, \quad \eta = -0.1.$ $\frac{\mathcal{H}_1 = \{c_p^{\dagger} O_{\mu_1}^{\dagger} | \text{HF} >\}}{\mathcal{H}_2 = \{c_p^{\dagger} O_{\mu_1}^{\dagger} O_{\nu_1}^{\dagger} | \text{HF} >\}}$ NN+NNN potential . NNLO_{sat} we tune the strength of ΛΝ V_{^N} = -34.0 MeV ¹⁷^O $N_{max} = 12$ 0 Down shift in energy for the whole spectrum due to the coupling of Λ with phonon

- More complex energy spectrum in EMPM (there is multiplet of negative energy states instead of 1/2⁻ and 3/2⁻ only)

excitations of the nuclear core

- No direct "experimental" binding B_{Λ} of ${}^{17}_{\Lambda}$ O. Usualy exper. value taken from experiment on ${}^{16}_{\Lambda}$ O.

EMPM extended on single- Λ hypernuclei

II) hypernuclei with Λ in even-odd nuclear cores

 G-matrix effective ΛN potential derived from Juelich-A YN Prog. Theor. Phys. Suppl. 117, 361 (1994)
 Gaussian-like form – easy to implement, interaction is effective (we can take just ΛN-ΛN part) but dependent on a parameter k_F

$$V_{AN}(r) = \sum_{i=1}^{3} (a_i + b_i k_{\rm F} + c_i k_{\rm F}^2) \exp[-r^2/\beta_i^2]$$

Fig. 2. The Λ single-particle energies $\epsilon_A(nl; A)$, nl = 0s, 0p and 0d, calculated in DDHF with five effective interactions. The experimental data

Prog. Theor. Phys. Suppl. **117**, 361 (1994)

Dependence of the Λ single-particle energies on $k_{_{\rm E}}$

 \mathbf{k}_{F} as a parameter to tune the proper effective ΛN interaction. But tuning should be done at the level of the beyond mean-field calculation.

EMPM extended on single- Λ hypernuclei

II) hypernuclei with Λ in even-odd nuclear cores

EMPM extended on single- Λ hypernuclei

II) hypernuclei with Λ in even-odd nuclear cores

Summary

- EMPM was originally introduced for the calculation of energy spectra of medium and heavy nuclei
- **Extensions** of EMPM to calculate single- Λ hypernuclei (with even-even & odd-even cores)
- Both nuclear & hypernuclear calcs. useful to study production of hypernuclei
- **Proof of principles** calculations of ${}^{5}_{\Lambda}$ He, ${}^{17}_{\Lambda}$ O, ${}^{16}_{\Lambda}$ O, ${}^{16}_{\Lambda}$ N with EMPM phenom. AN interaction
- Tasks to be addressed:
 - various effective ΛN potentials can be used (important to tune them in the beyond mean-field level)
 - study of ${}^{40}_{\Lambda}K$, ${}^{48}_{\Lambda}K$, ${}^{208}_{\Lambda}TI$ (their exper. measurement is planned in close future)
 - formalism to study directly cross section of electroproduction
 - formalism to study isospin dependence of ΛNN interaction (${}^{40}_{\Lambda}K \& {}^{48}_{\Lambda}K$)
- More long-term tasks:
 - further **development of EMPM** itself (coupling to 2-phonon states)
 - formulation of whole method in **deformed HF** basis

Many thanks to all my collaborators!!

P. Bydžovský, G. De Gregorio, D. Denisova, F. Knapp, N. Lo Iudice, D. Petrellis, J. Pokorný, D. Skoupil

 $\hat{\mathcal{O}} = \sum_{\mathbf{x}} \left(\frac{\alpha}{2} \| F_{LM}(Y_{\ell} \otimes \sigma^{s}] \| \alpha' \right) c_{\mathbf{x}}^{\dagger} \tilde{a}_{\mathbf{x}'}$ $\rightarrow (\phi_{\mu} \parallel \hat{O} \parallel \phi_{A}) = \xi Q_{\mu} (\phi_{\mu} \parallel \mu)$ 0 = (n. l. J. II Fim (Y. Oo] I In ... (y.) 2 $u_p = \sqrt{\frac{E_p + m_p}{2m_p}}$ $S = (p_{x+}p_{p})^{2} (p_{x-}p_{n})^{2} + t = (p_{x-}p_{n})^{2}$ En= Call (p) & U(pe) (1-6 approx)

Thank you for attention!