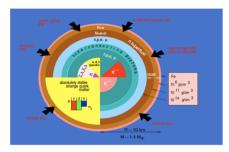


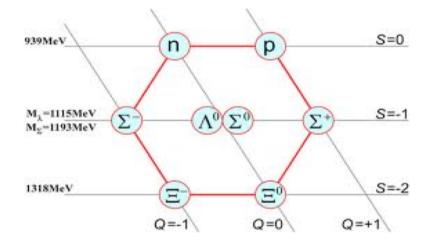
Hyperons in Nuclei and Neutron Stars

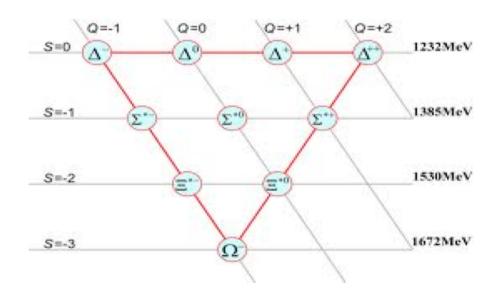

Laura Tolós Space Sciences

Institute of Space Sciences CSIC IEEEC

based on Laura Tolos and Laura Fabbietti, Prog. Part. Nucl. Phys. 112 (2020) 103770, 2002.09223 [nucl-ex]

Outline




- Hyperons and where to find them
- YN and YY interactions
- Hypernuclei
- Hyperons in matter
- Hyperons and Neutron Stars
- Present and Future

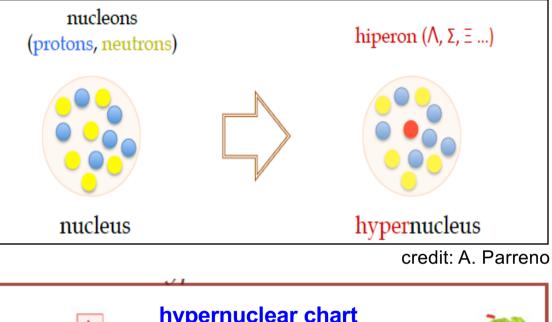
Hyperons and where to find them

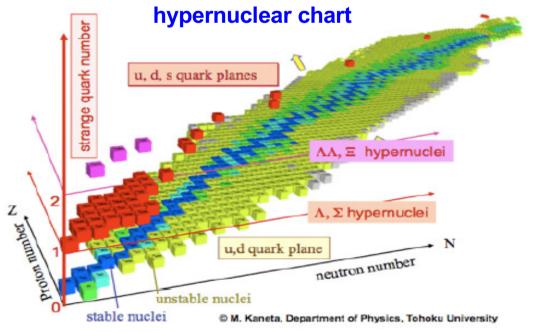
A hyperon is a baryon containing one or more strange quarks

Hyperon	Quarks	I(J₽)	Mass (MeV)
Λ	uds	O(I/2+)	1115
Σ^+	uus	1(1/2+)	1189
Σο	uds	1(1/2+)	1193
Σ-	dds	1(1/2+)	1197
Ξo	uss	1/2(1/2+)	1315
Ξ-	dss	1/2(1/2+)	1321
Ω-	8 55	0(3/2+)	1672

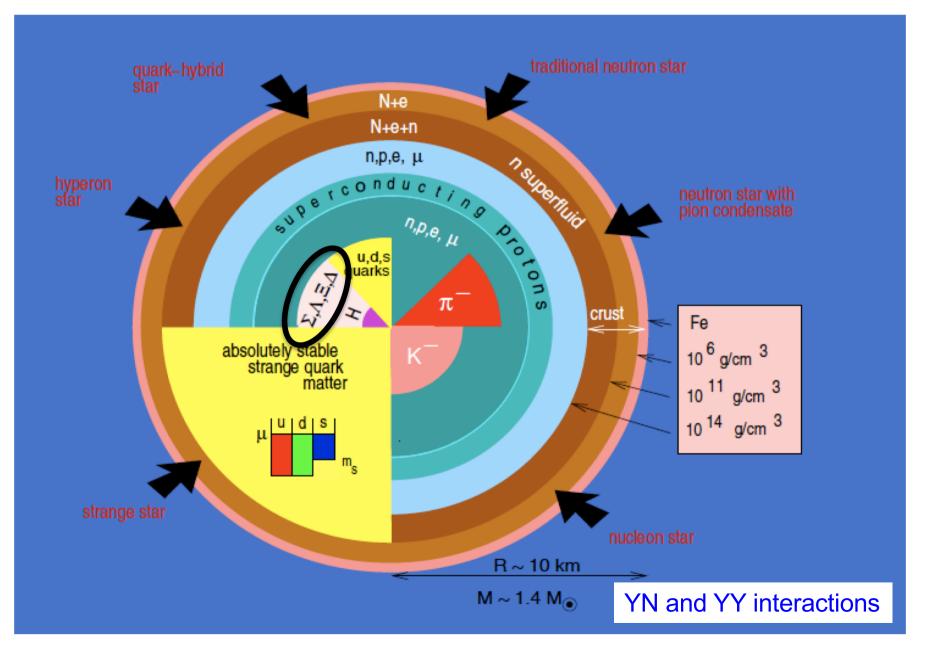
credit: I. Vidana

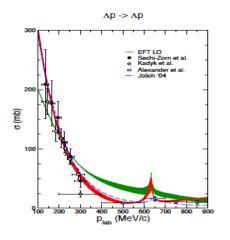
On Earth: Hypernuclei

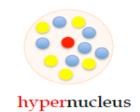

A hyperon is a baryon containing one or more strange quarks


Hyperon	Quarks	(J₽)	Mass (MeV)
Λ	uds	O(I/2+)	1115
Σ^+	uus	1(1/2+)	1189
Σο	uds	1(1/2+)	1193
Σ^{-}	dds	1(1/2+)	1197
Ξo	USS	1/2(1/2+)	1315
Ξ-	d55	1/2(1/2+)	1321
Ω-	5 55	0(3/2+)	1672

credit: I. Vidana


The study of hypernucleus allows for


new spectroscopy
information on strong and weak interactions between hyperons and nucleons


In Neutron Stars

YN and YY interactions

- Study strangeness in nuclear physics
- Provide input for hypernuclear physics and astrophysics

Scarce YN scattering data due to the short life of hyperons and the low-density beam fluxes

AN and ΣN : < 50 data points EN very few events

NN: > 5000 data for E_{lab}<350 MeV Data from hypernuclei:

- more than 40 Λ-hypernuclei
 (ΛN attractive)
- few $\Lambda \Lambda$ hypernuclei
- ($\Lambda\Lambda$ weak attraction)
- few Ξ-hypernuclei
 (ΞN attractive)
- evidence of 1 Σ-hypernuclei ?
 (ΣN repulsive)

Theoretical approaches to YN and YY

- Meson exchange models (Juelich/Nijmegen models)
 To build YN and YY from a NN meson-exchange model imposing SU(3)_{flavor}
 symmetry
 Juelich: Holzenkamp, Holinde, Speth '89; Haidenbauer and Meißner '05
 Nijmegen: Maesen, Rijken, de Swart '89; Rijken, Nagels and Yamamoto '10
- Chiral effective field theory approach (Juelich-Bonn-Munich group)
 To build YN and YY from a chiral effective Lagrangian similarly to NN
 interaction
 Juelich-Bonn-Munich: Polinder, Haidenbauer and Meißner '06; Haidenbauer, Petschauer, Kaiser, Meißner, Nogga and Weise '13

Kohno '10; Kohno '18

• Quark model potentials

To build YN and YY within constituent quark models

Fujiwara, Suzuki, Nakamoto '07 Garcilazo, Fernandez-Carames and Valcarce '07 '10

• V_{low k} approach

To calculate a "universal" effective low-momentum potential for YN and YY using RG techniques Schaefer, Wagner, Wambach, Kuo and Brown '06

• Lattice calculations (HALQCD/NPLQCD)

To solve YN and YY interactions on the lattice

HALQCD: Ishii, Aoki, Hatsuda '07; Aoki, Hatsuda and Ishii '10; Aoki et al '12 **NPLQCD:** Beane, Orginos and Savage '11; Beane et al '12

Theoretical approaches to YN and YY

• Meson exchange models (Juelich/Nijmegen models)

To build YN and YY from a NN meson-exchange model imposing SU(3)_{flavor} symmetry Juelich: Holzenkamp, Holinde, Speth '89; Haidenbauer and Meißner '05 Nijmegen: Maesen, Rijken, de Swart '89; Rijken, Nagels and Yamamoto '10

• Chiral effective field theory approach (Juelich-Bonn-Munich group) To build YN and YY from a chiral effective Lagrangian similarly to NN

interaction

Juelich-Bonn-Munich: Polinder, Haidenbauer and Meißner '06; Haidenbauer, Petschauer, Kaiser, Meißner, Nogga and Weise '13 Kohno '10; Kohno '18

• Quark model potentials

To build YN and YY within constituent quark models

Fujiwara, Suzuki, Nakamoto '07 Garcilazo, Fernandez-Carames and Valcarce '07 '10

• V_{low k} approach

To calculate a "universal" effective low-momentum potential for YN and YY using RG techniques Schaefer, Wagner, Wambach, Kuo and Brown '06

• Lattice calculations (HALQCD/NPLQCD)

To solve YN and YY interactions on the lattice

HALQCD: Ishii, Aoki, Hatsuda '07; Aoki, Hatsuda and Ishii '10; Aoki et al '12 **NPLQCD:** Beane, Orginos and Savage '11; Beane et al '12

YN (and YY) meson-exchange models

Built from a NN meson-exchange model imposing SU(3)_{flavor} symmetry

NIJMEGEN

(Nagels, Rijken, de Swart, Timmermans, Maessen..)

 ✓ Based on Nijmegen NN potential

✓ Momentum and Configuration
 Space

✓ Exchange of pseudoscalar, vector and scalar nonets

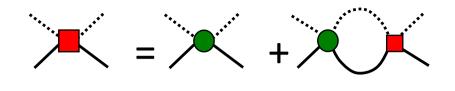
✓ SU(3) symmetry to relate YN to NN vertices

✓ Gaussian form factors

JUELICH

(Holzenkamp, Reube, Holinde, Speth, Haidenbauer, Meissner, Melnitchouck..)

✓ Based on Bonn NN potential


 ✓ Momentum Space, Full
 Energy Dependence & Nonlocalities

 ✓ Exchange of single mesons and higher order processes

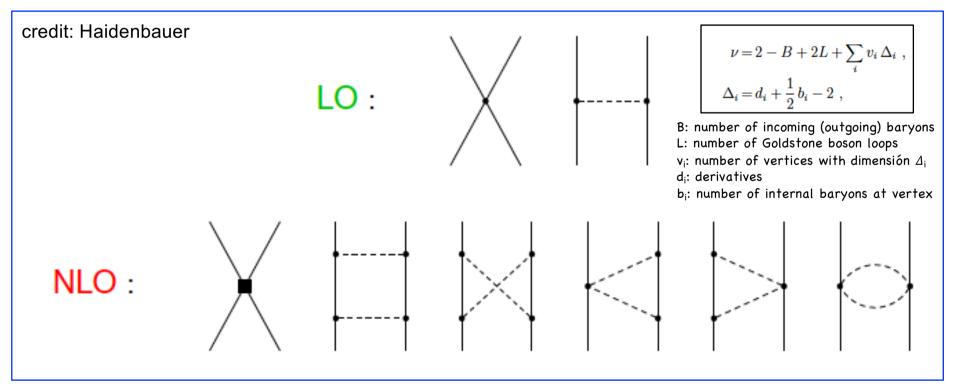
✓ SU(6) symmetry to relate YN to NN vertices

✓ Dipolar form factors

ΛN and ΣN scattering

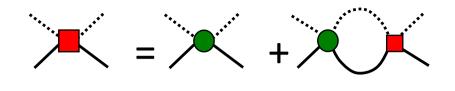
 $T = V + V \frac{1}{E_0 - H_0 + i\eta} T$

LO: H. Polinder, J.H., U. Meißner, NPA 779 (2006) 244 NLO: J.H., N. Kaiser, et al., NPA 915 (2013) 24 Jülich '04: J.H., U.-G. Meißner, PRC 72 (2005) 044005



YN (and YY) interactions in χ EFT

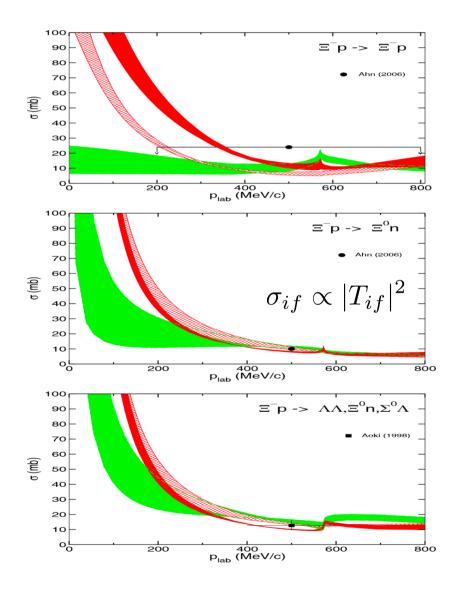
Baryon-Baryon interaction in SU(3) χ EFT a la Weinberg (1990);

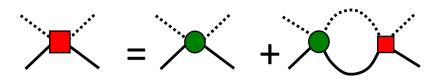

- **power counting** allowing for a systematic improvement by going to higher order
- derivation of two- and three-baryon forces in a consistent way

Degrees of freedom: octet of baryons (N, Λ , Σ , Ξ) & pseudoscalar mesons (π ,K, η) Diagrams: pseudoscalar-meson exchanges and contact terms

LO: H. Polinder, J.H., U. Meißner, NPA 779 (2006) 244 NLO: J.H., N. Kaiser, U.-G. Meißner, A. Nogga, S. Petschauer, W. Weise, NPA 915 (2013)_24

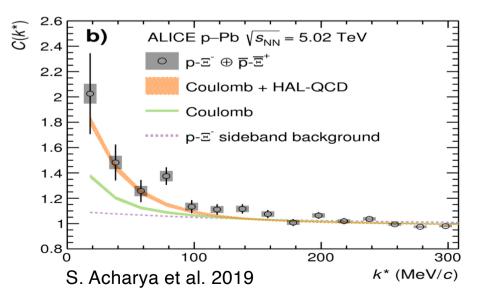
ΛN and ΣN scattering



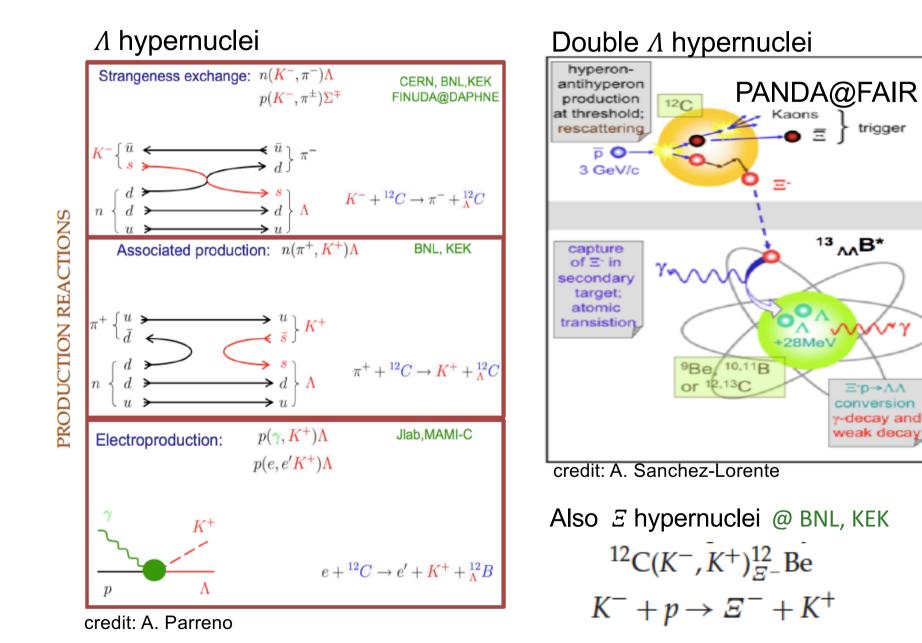

 $T = V + V \frac{1}{E_0 - H_0 + i\eta} T$

LO: H. Polinder, J.H., U. Meißner, NPA 779 (2006) 244 NLO: J.H., N. Kaiser, et al., NPA 915 (2013) 24 Jülich '04: J.H., U.-G. Meißner, PRC 72 (2005) 044005

EN scattering

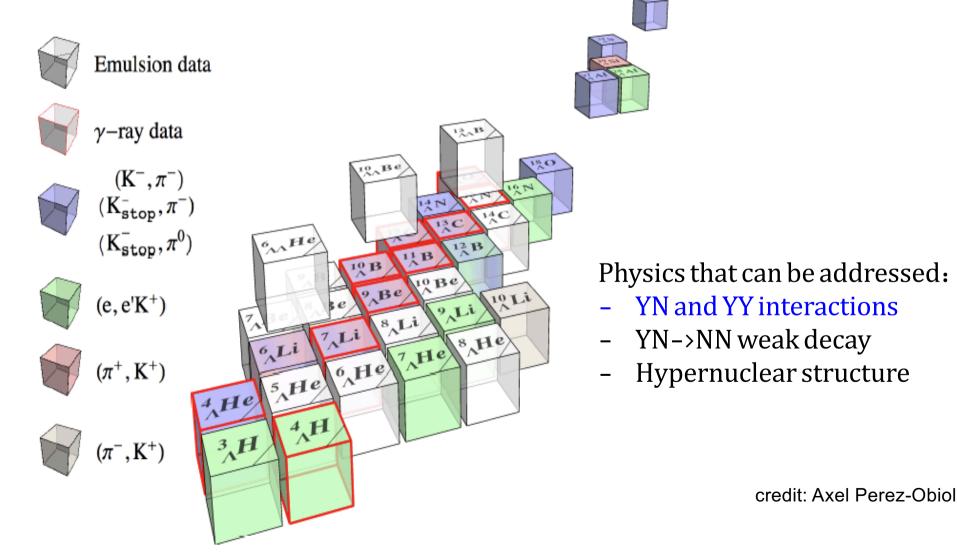

$$T = V + V \frac{1}{E_0 - H_0 + i\eta} T$$

ΞN cross sections are small

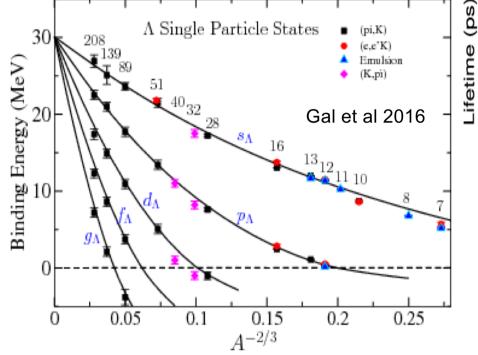

J. Haidenbauer and

U.G. Meißner EPJA 55 (2019) 23

Scarce experimental information. New results from femtoscopy

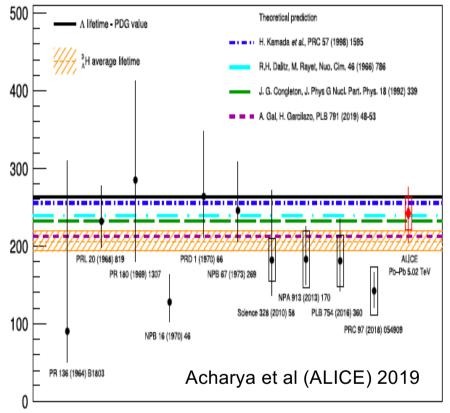


Hypernuclei


Laboratories: BNL, CERN, KEK, JLab, DA¢NE, GSI, FAIR

Reactions:

Binding energy of Λ hypernuclei


Hypertriton lifetime puzzle

Binding energy of different hypernuclei as function of the mass number

Binding energy saturates at about -30 MeV for large nuclei

Single-particle model reproduces the data quite well Gal et al 2016

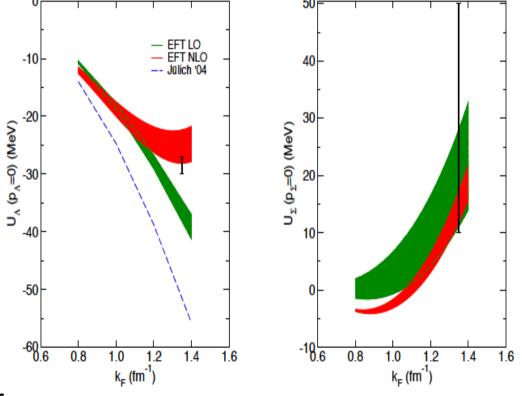
Expected $\tau({}^{3}_{\Lambda}H) = \tau(\Lambda)$ \Leftrightarrow observed: $\tau({}^{3}_{\Lambda}H) < \tau(\Lambda)$

Conflicting measurements by STAR and ALICE of the hypertriton lifetime triggered the revived experimental and theoretical interest

Hyperons in matter

A and Σ in dense matter

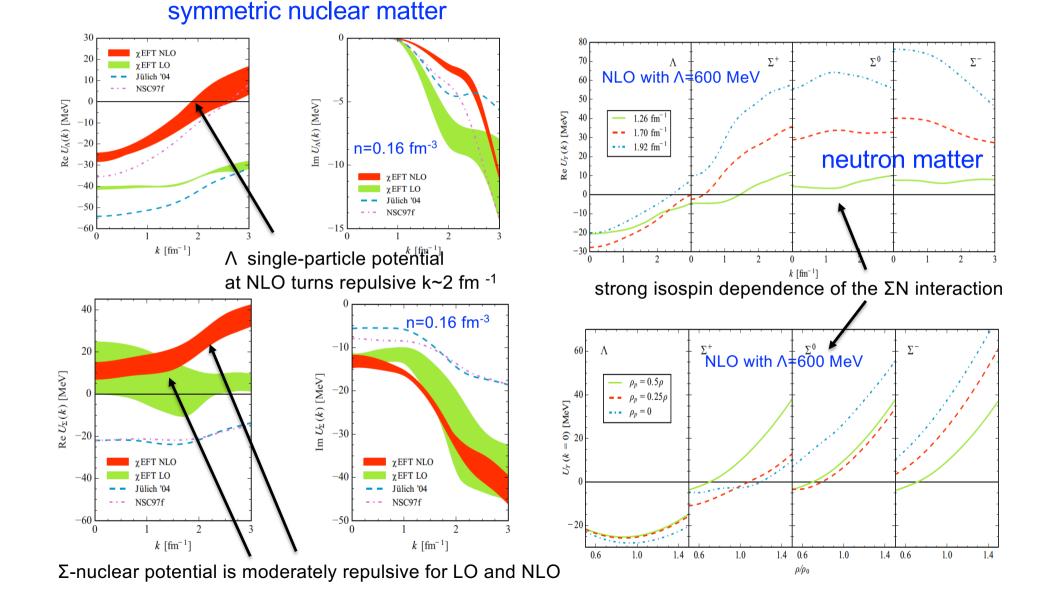
 $\mathbf{G} - \mathbf{G} + \mathbf{G} - \mathbf{G} - \mathbf{G} = \mathbf{V} + \mathbf{V} \frac{Q_{\text{pauli}}}{E_0 - H_0} \mathbf{G}$

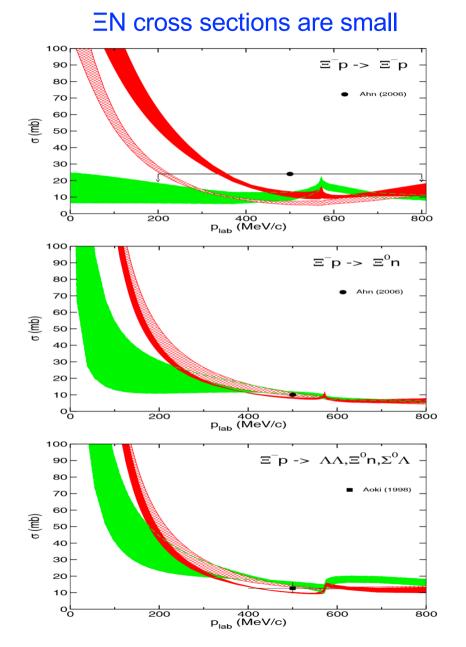

 $k_F = 1.35 \text{ fm}^{-1} \ (\rho_0 = 0.166 \text{ fm}^{-3})$

	EFT LO	EFT NLO
۸ [MeV]	550 · · · 700	500 • • • 650
<i>U</i> ∧(0)	-38.0 • • • -34.4	-28.2 • • • -22.4
<i>U</i> _Σ (0)	28.0 • • • 11.1	17.3 • • • 11.9

- Empirical value of Λ binding in nuclear matter ~27-30 MeV

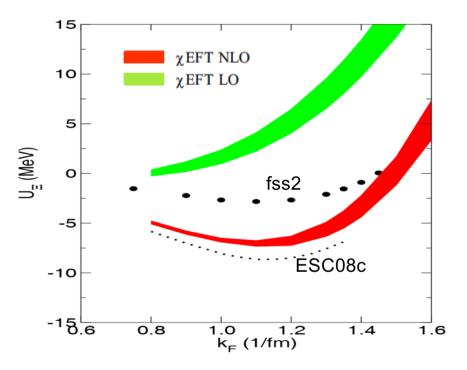
- ΣN (I=3/2): ${}^{3}S_{1}$ - ${}^{3}D_{1}$ decisive for Σ properties in nuclear matter. YN data can be reproduced with attractive and repulsive ${}^{3}S_{1}$ - ${}^{3}D_{1}$ interaction. It is chosen to be repulsive in accordance to data on Σ^{-} atoms and (π^{-} ,K⁺) inclusive spectra for Σ^{-} formation in heavy nuclei. Lattice* supports repulsion!


* Nemura et al EPJ Web of Conferences 175 (2018) 05030

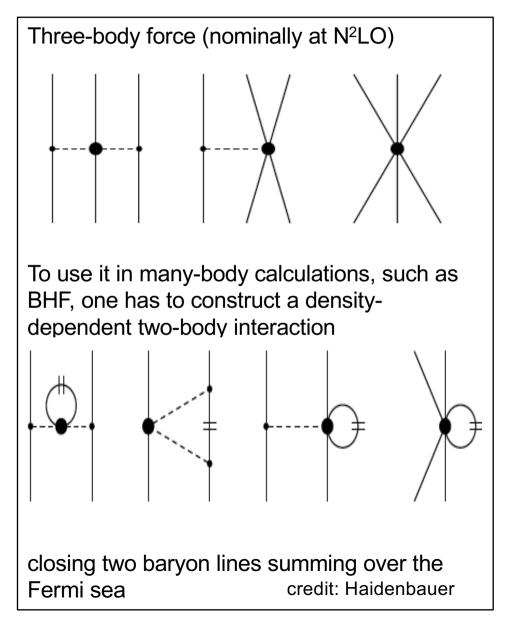

Haidenbauer and Meißner, NPA 936 (2015) 29

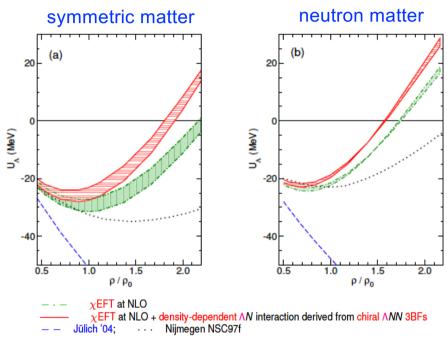
Improving on the calculation by using χ EFT NN interaction and continuous choice in Brueckner-Hartree-Fock approach while investigating isospin-asymmetric matter

S. Petschauer, J. Haidenbauer, N. Kaiser, U.G. Meißner and W. Weise EPJA 52 (2016) 15



J. Haidenbauer and U.G. Meißner EPJA 55 (2019) 23

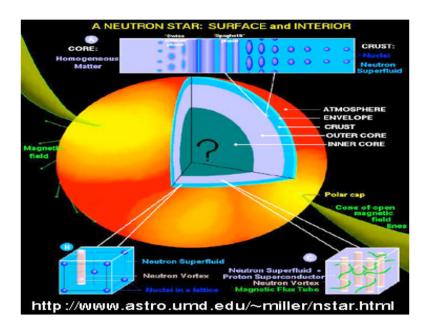

E in dense matter

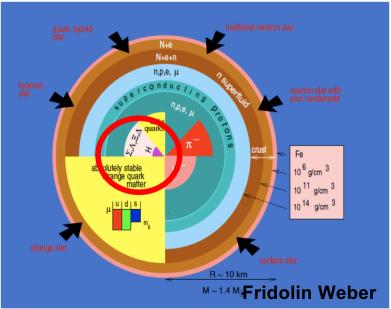


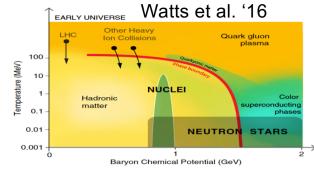
Moderately attractive Ξ -nuclear interaction, with $U_{\Xi}(0,k_{F0}) \sim -3$ to -5 MeV. Smaller than $U_{\Xi}(n_0) \sim -14$ MeV Khaustov et al'00 and in line with other BHF studies with phenomenological Ξ N potentials

Λ in dense matter: including three-body forces

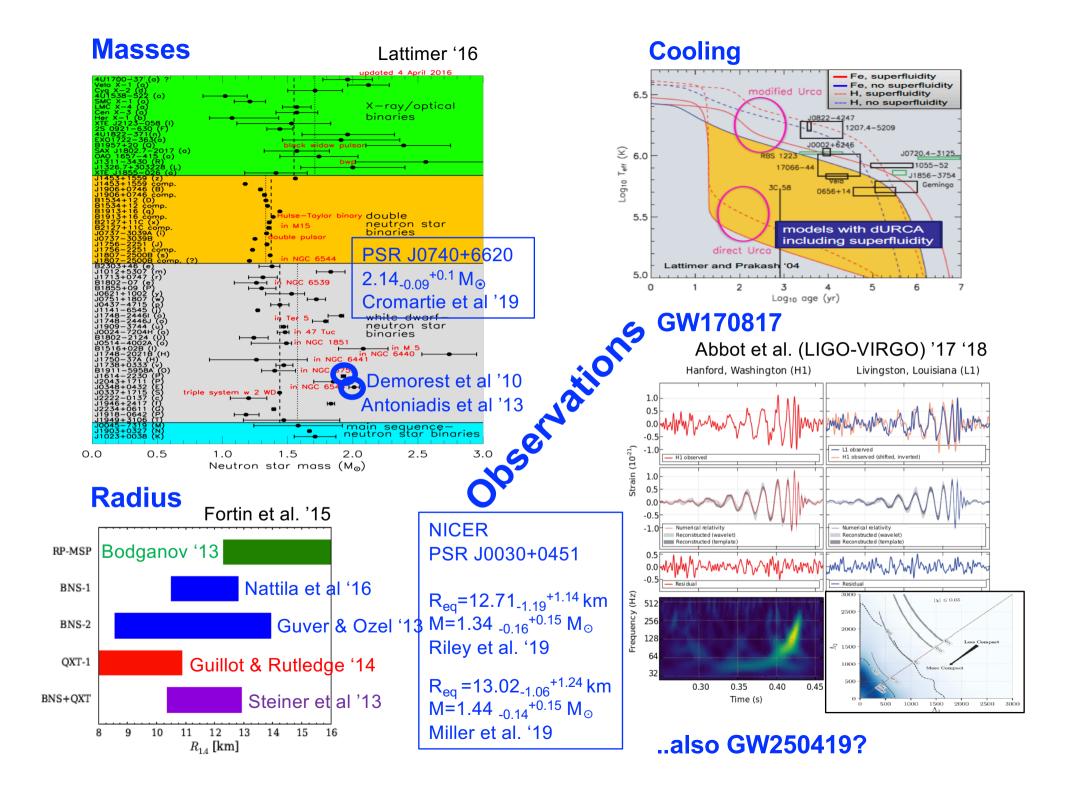
Three-body forces are required to reproduce few-nucleon binding energies, scattering observables and nuclear saturation in non-relativistic many-body approaches

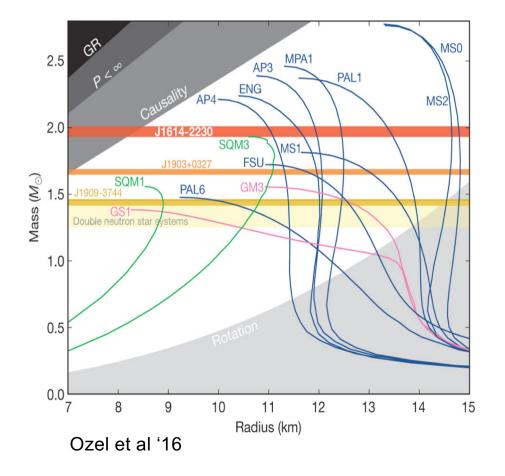

Λ in dense matter


χ EFT gives little attraction or even repulsion for n>n₀


In neutron stars, hyperons will appear at high density!! Solution of the Hyperon Puzzle?

J. Haidenbauer, U.G. Meißner, N. Kaiser and W. Weise EPJA 53 (2017) 121

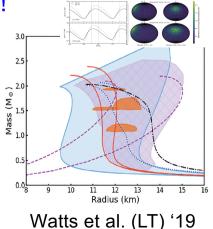

Hyperons and Neutron Stars


- produced in core collapse
 supernova explosions, usually
 observed as pulsars
- usually refer to compact objects with M~1-2 M_{\odot} and R~10-12 Km
- extreme densities up to 5-10 ρ_0 (n₀=0.16 fm⁻³ => ρ_0 =3•10¹⁴ g/cm³)
- magnetic field : $B \sim 10^{8..16} G$
- temperature: T ~ 10 6...11 K
- observations: masses, radius (?), gravitational waves, cooling...

Mass-Radius Relation

$$\frac{dP}{dr} = -\frac{Gm\epsilon}{c^2r^2}\left(1+\frac{P}{\epsilon}\right)\left(1+\frac{4\pi r^3P}{c^2m}\right)\left(1-\frac{2Gm}{c^2r}\right)^{-1}$$

$$\frac{dm}{dr} = \frac{4\pi r^2\epsilon}{c^2}$$



- primary ingredient:
 EoS: ε(n), P(n), P(ε)
 in charge neutral β-stable matter
- some constraints:
- Schwarzschild limit (GR)
 R ≥ 2 GM/c²
- causality limit for EoS $R \ge 2.9 \text{ GM/c}^2$
- mass-shedding limit R < $(GM/2\pi)^{1/3}/v^{2/3}$

Need of simultaneous mass-radius measurements to constrain EoS !!!

The Nucleonic Equation of State

The Equation of State (EoS) is a relation between thermodynamic variables describing the state of matter

Microscopic Ab-initio Approaches:

based on solving the many-body problem starting from two- and threebody interactions

- Variational method: APR, CBF,...
- Quantum Montecarlo : AFDMC..
- Coupled cluster expansion
- Diagrammatic: BBG (BHF), SCGF.
- Relativistic DBHF
- RG methods: SRG from *x*EFT..
- Lattice methods

Advantage: systematic addition of higher-order contributions Disadvantage: applicable up to? (SRG from $\chi EFT \sim 1-2 n_0$)

Phenomenological Approaches:

based on density-dependent interactions adjusted to nuclear observables and neutron star observations

- Non-relativistic EDF: Skyrme..
- Relativistic Mean-Field (RMF) and Relativistic Hartree-Fock (RHF)
- Liquid Drop Model: BPS, BBP,..
- Thomas-Fermi model: Shen
- Statistical Model: HWN,RG,HS..

Advantage: applicable to high densities beyond n₀ Disadvantage: not systematic

What about Hyperons?

Hyperon

Hyperon	Quarks	I(J [₽])	Mass (MeV)
Λ	uds	O(1/2+)	1115
Σ^+	uus	1(1/2+)	1189
Σο	uds	1(1/2+)	1193
Σ^{-}	dds	1(1/2+)	1197
Ξο	uss	1/2(1/2+)	1315
Ξ-	dss	1/2(1/2+)	1321
Ω-	<mark>5</mark> 55	0(3/2+)	1672

credit: Vidana

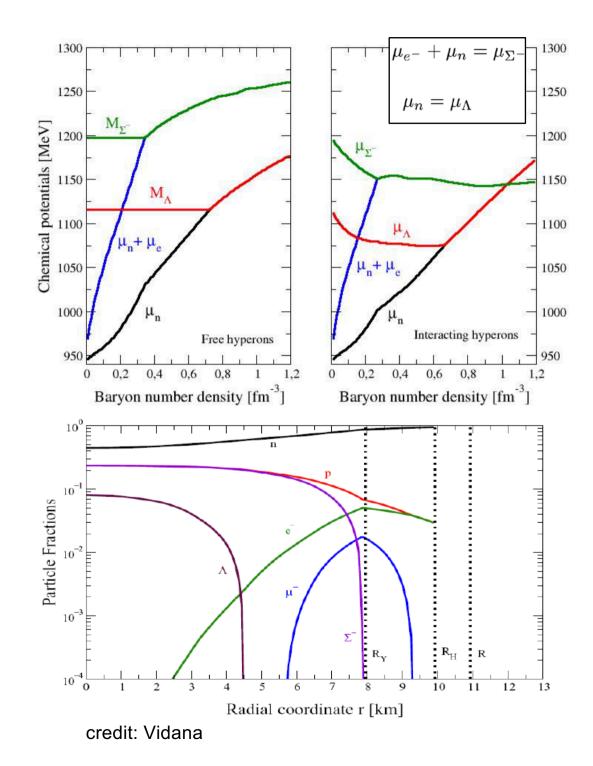
First proposed in 1960 by Ambartsumyan & Saakyan

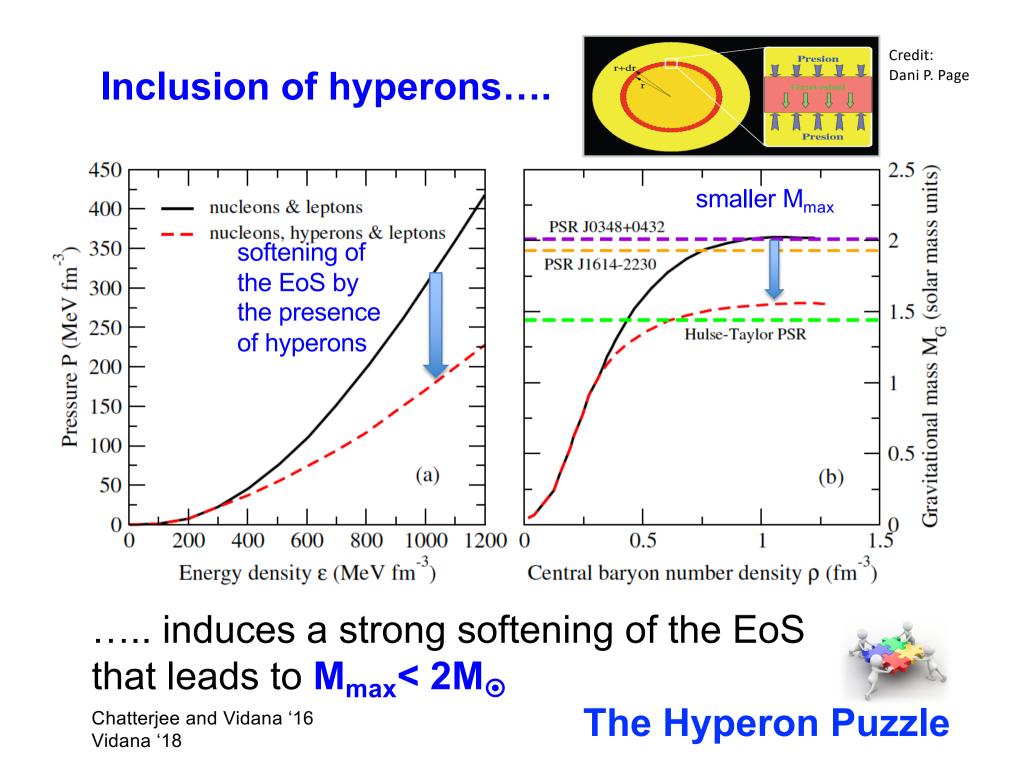
Traditionally neutron stars were modeled by a uniform fluid of neutron rich matter in β -equilibrium $n \rightarrow p \ e^- \ \nu_e$

 $p \ e^- \rightarrow n \ \nu_e$

but more exotic degrees of freedom are expected, such as **hyperons**, due to:

- high value of density at the center and
- the rapid increase of the nucleon chemical potential with density


Hyperons might be present at $n \sim (2-3)n_0$!!!


β-stable hyperonic matter

 μ_N is large enough to make N->Y favorable

$$\begin{split} n+n &\to n+\Lambda \\ p+e^- &\to \Lambda+\nu_{e^-} \\ n+n &\to p+\Sigma^- \\ n+e^- &\to \Sigma^-+\nu_{e^-} \end{split}$$

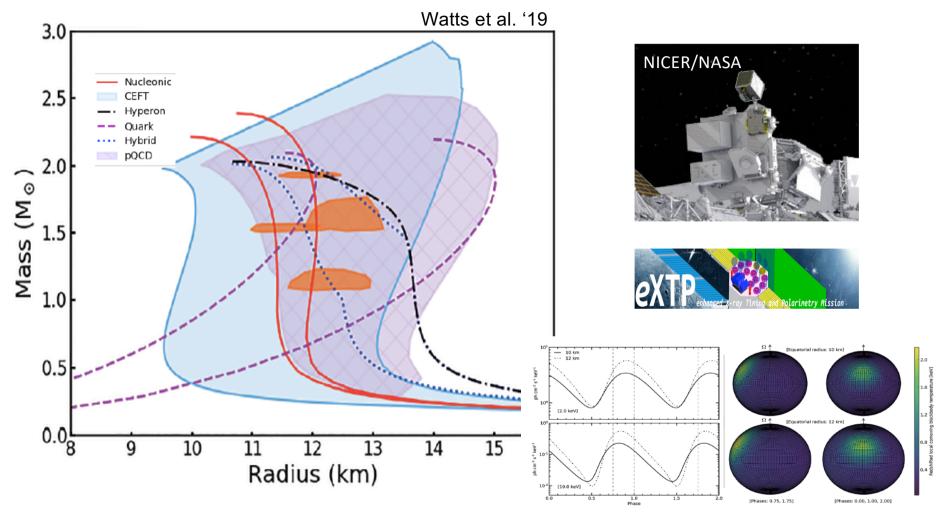
$$\mu_i = b_i \mu_n - q_i \mu_e$$
$$\sum_i x_i q_i = 0$$

The Hyperon Puzzle

Scarce experimental information:

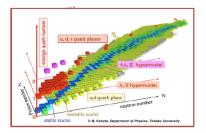
- data from several single Λ - and few Ξ - hypernuclei, and few double Λ hypernuclei

few YN scattering data
 (~ 50 points) due to
 difficulties in preparing
 hyperon beams and no
 hyperon targets available

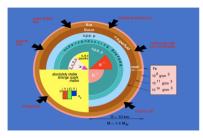

- YN data from femtoscopy

The presence of hyperons in neutron stars is energetically probable as density increases. However, it induces a strong softening of the EoS that leads to maximum neutron star masses $< 2M_{\odot}$

Solution?


- ➤ stiffer YN and YY interactions
- hyperonic 3-body forces
- > push of Y onset by Δ -isobars or meson condensates
- ➤ quark matter below Y onset
- dark matter, modified gravity theories...

Future: space missions to study the interior of NS



Constraints from pulse profile modelling of rotation-powered pulsars with eXTP

and multimessenger astronomy

A lot of experimental, observational and theoretical effort has been invested to understand hyperons in nuclei and neutron stars

Hyperon-nucleon and hyperon-hyperon interactions are crucial for hypernuclear physics and the physics of compact objects, such as neutron stars

Neutron stars provide a unique scenario for testing hyperons at extreme densities

The future of hyperon physics relies on particle and nuclear experiments as well as X-ray and multimessenger astronomy

MINISTERIO DE CIENCIA E INNOVAC

