New experiment on kaonic nucleus at J-PARC

-from the $\overline{K}N$ to $\overline{K}NNNN$ systems –

Joint THEIA-STRONG2020 and JAEA/Mainz REIMEI Web-Seminar, Dec 6, 2020

Physics Goal

Reveal the \overline{K} meson property inside nuclei via the $\overline{K}N$ interaction

Kaonic Nuclei

Predicted from **attractive** \overline{KN} interaction in I=0

1 *fm*

T=1, J=3/2

1 *fm*

0

T=0, J=1/2

fm

Kaonic Nuclei

Are Kaonic Nuclei Really Compact?

5

In the case of the $\overline{K}NN$ system ($J^{P}=0^{-}$)

J-PARC E15 Experiment

-- brief review --

J-PARC E15 Experiment - Experimental Search for the $\overline{K}NN$ -

We measured the ³He(K⁻,Λp)n reaction

(K⁻,n) Momentum Transfer Analysis

"K⁻pp" bound state exists

 $\checkmark q$ -independent

- QF followed by 2NA shows Λpn FS can be generated from 2-step processes via (K⁻,n)
 - ✓q-dependent

→ quite important to understand the production mechanism of the "K⁻pp" bound state

2D analysis in (M,q) is essential

"K⁻pp" Bound State

Size of "K⁻pp"

Fit with PWIA $\sigma(M,q) \propto \rho(M,q) \times \frac{(\Gamma_{Kpp}/2)^2}{(M-M_{Kpp})^2 + (\Gamma_{Kpp}/2)^2} \times exp\left(-\frac{q^2}{Q_{Kpp}^2}\right)$

B_{Kpp} ~ 40 MeV $B_{Kpp} \sim 40 \text{ MeV}$ $Q_{kpp} \sim 400 \text{ MeV}$ \rightarrow large binding energy \rightarrow wide momentum transfer

Q_{kpp} ~ 400 MeV

suggest the "K⁻pp" is quite compact (R_{Kpp} ~ 0.6 fm) \rightarrow Need more realistic theoretical calculations

Theoretical Progresses

• A theoretical calculation in chiral unitary approach reproduces the mass spectrum with the $\overline{K}NN$

→ Theoretical investigations for experimental results are indispensable

PLB789(2019)620.

PTEP,2016(2016)123D03. JPS Conf. Proc.26(2019)023009.

11

Many Questions to be Answered

- Further details of the $\overline{K}NN$
 - Spin and parity of the "K⁻pp"?
 - Strength of $\overline{K}N$ interaction?
 - Really compact and dense system?
- **A(1405)** state
 - $-\overline{K}N$ molecular state as considered?
 - Size?
 - Relation between $\overline{K}N$ and $\overline{K}NN$?

More heavier kaonic nuclei?

- Mass number dependence?
- Double kaonic nuclei?
 - Much compact and dense system?

K⁻p

New Project

13

-- systematic investigation of the light kaonic nuclei --

- Theoretically, $\Lambda(1405)$ is consider to be the $\overline{K}N$ quasi-free bound state
- We are now trying to determin the line shape of the $\overline{K}N \to \pi\Sigma$ channel via the (K⁻,n) reaction at $\theta_n = 0^\circ$ in E31

• Size of the $\Lambda(1405)$ is still important subject to be determined

 \rightarrow Clarify the picture whether a baryonic state or a $\overline{K}N$ molcuer

• We deduce the $\Lambda(1405)$ size via form factor measurement in a wide range of q

- The $\overline{K}NN$ system is expected to have $J^P = 0^-$
- To determine the spin/parity, "topological analysis of decay particles" and/or "direct measurement of decay particle polarization" is essential

15

- We determine the spin/parity of the system via its Λp decay
 - by introducing a polarimeter composed of a hodoscope and a tracker
- We precisely deduce the system size
 - with more statistical data in corporation with theoretical analyses

Task for *KNNN* and *KNNNN*

- Beyond the $\overline{K}NN$, more heavier system must be explored to establish the kaonic nuclei
 - ✓ In particular, the $\overline{K}NNNN$ system is expected to be the most compact system due to an α particle configuration
- We reveal the mass number dependence of the binding energy, decay width, and system size

- We also wish to access the S = -2 kaonic nuclei such as the theoretically predicted "K⁻K⁻pp" state
 - ✓ LoI was submitted (\bar{p}^{3} He annialation)

✓ A good probe to the $\overline{K}N$ int.

 The KKNN system could give us a chance to access much higher density than the S = −1 kaonic nuclei

The $\overline{K}\overline{K}NN$ production cross section would be quite small \rightarrow roughly 1/1000 of that of the $\overline{K}NN$

Strategy of the New Project

18

- for systematic study from the $\overline{K}N$ to $\overline{K}NNNN$ systems -

	Reaction	Decays	Кеу	
K N	d(K⁻,n)	$\pi^{\pm 0}\Sigma^{\mp 0}$	n/ γ identification	
K NN	³ He(K⁻,N)	$\Lambda p / \Lambda n$	<u>polarimeter</u>	Feasibility study
<i>K</i> NNN	⁴ He(K⁻,N)	Λ d/ Λ pn	large acceptance \leftarrow	A first step
<i>K</i> NNNN	⁶ Li(K⁻,d)	Λt/Λdn/Λpnn	many body decay 🧲	Feasibility study
<i>₩KNN</i>	$ar{p}$ + 3 He	ΛΛ	$ar{p}$ beam yield	

We take a step-by-step approach

• To realize the systematic measurements, we utilize

a large acceptance spectrometer

detect/identify all particles to specify the reaction

high-intensity kaon beam

more K⁻ yield than the existing beamline

J-PARC P80 Experiment

19

-- $\overline{K}NNN$ search via $K^- + {}^{4}He$ reactions --

"K⁻ppn" Candidates so far

Goals of the proposed experiment:

21

- ① Observe the K⁻ppn state via 2-body Ad decay
 ➢ Establish the existence of the kaonic nuclei
- ② Reconstruct the K⁻ppn state via 3-body Apn decay
 ➢ As a feasibility study to access heavier system
- Feasibility study of the polarization measurement
 > e.g., by installing a prototype module of the polarimeter

A New Cylindrical Detector System

A new 4π spectrometer with n/ γ detection capability

A New Cylindrical Detector System

• Electromagnetic Calorimeter (constructed in 2nd-stage)

(~1.5x15%)

Improvement of Kaon Intensity

• We propose a new configuration of the beamline

• K- yield is expected to increase by ~ 1.4 times @ 1.0 GeV/c

Expected Yield of $\overline{K}NNN$

$$N = \sigma \times N_{beam} \times N_{target} \times \epsilon,$$

$$\epsilon = \epsilon_{DAQ} \times \epsilon_{trigger} \times \epsilon_{beam} \times \epsilon_{fiducial} \times \Omega_{CDS} \times \epsilon_{CDS},$$

$$\begin{aligned} &\sigma(K^-ppn)\cdot Br(\Lambda d) ~\sim 10~\mu b \\ &\sigma(K^-ppn)\cdot Br(\Lambda pn) \sim 10~\mu b \end{aligned}$$

The same CS of "K-pp" → Λp in E15
As for Λd decay, we refer to the absorption of stopped K⁻ on ⁴He
→ decay fraction to Σ⁻pd : Σ⁻ppn ~ 1 : 1

absorption of stopped K⁻ on ⁴He

Reaction	Events/(stopping K^-) (%)			
$\begin{array}{ccc} K^{-}\mathrm{He}^{4} \rightarrow \Sigma^{+}\pi^{-}\mathrm{H}^{3} \\ \rightarrow \Sigma^{+}\pi^{-}dn \\ \rightarrow \Sigma^{+}\pi^{-}pnn \\ \rightarrow \Sigma^{+}\pi^{0}nnn \\ \rightarrow \Sigma^{+} nnn \\ \mathrm{Total} \ \Sigma^{+} = (17.0 \pm 2) \end{array}$	9.3 \pm 2.3 1.9 \pm 0.7 1.6 \pm 0.6 3.2 \pm 1.0 1.0 \pm 0.4 .7)%			
$K^{-}\text{He}^{4} \rightarrow \Sigma^{-}\pi^{+}\text{H}^{3}$ $\rightarrow \Sigma^{-}\pi^{+}dn$ $\rightarrow \Sigma^{-}\pi^{0} \text{ fm}^{0}$ $\rightarrow \Sigma^{-}\pi^{0} \text{ fm}^{0}$ $\rightarrow \Sigma^{-}\pi^{0} \text{ pd}$ $\rightarrow \Sigma^{-} \text{ pd}$ $\rightarrow \Sigma^{-} \text{ pd}$ $\qquad \qquad $	$\begin{array}{r} 4.2 \pm 1.2 \\ 1.6 \pm 0.6 \\ 1.4 \pm 0.5 \\ 1.0 \pm 0.5 \\ 1.0 \pm 0.5 \\ 1.0 \pm 0.4 \\ 1.6 \pm 0.6 \\ 2.0 \pm 0.7 \end{array}$			
$K^{-}\text{He}^{4} \rightarrow \pi^{-}\Lambda \text{ He}^{3}$ $\rightarrow \pi^{-}\Lambda pd$ $\rightarrow \pi^{-}\Lambda pd$ $\rightarrow \pi^{-}\Delta pdn$ $\rightarrow \pi^{-}\Sigma^{0} \text{ He}^{3}$ $\rightarrow \pi^{-}\Sigma^{0} (pd, ppn)$ $\rightarrow \pi^{0}\Lambda (\Sigma^{0}) (pnn)$ $\rightarrow \pi^{+}\Lambda (\Sigma^{0}) nnn$ $Total \Lambda (\Sigma^{0}) = (69.2\pm 100) \pi^{+}0^{0}7$	$ \begin{array}{c} 11.2\pm2.7\\ 10.9\pm2.6\\ 9.5\pm2.4\\ 0.9\pm0.6\\ 0.3\pm0.3\\ 22.5\pm4.2\\ 11.7\pm2.4\\ 2.1\pm0.7\\ 6.6.6)\% \end{array} $			
$1 \text{ otal} = \Lambda + 2 = (100_{-7})\%$				

PRD1(1970)1267

Expected Yield of $\overline{K}NNN$

$$V = \sigma \times N_{beam} \times N_{target} \times \epsilon,$$

$$\epsilon = \epsilon_{DAQ} \times \epsilon_{trigger} \times \epsilon_{beam} \times \epsilon_{fiducial} \times \Omega_{CDS} \times \epsilon_{CDS},$$

• N_{beam} = **100 G** K- on target

- under the MR beam power of **90 kW** with **5.2 s** repetition cycle. **around 2023**
 - 3.2 x 10⁵ K- on target / spill @ 1.0 GeV/c
- 3 weeks data taking (90% up-time)
- N(K⁻ppn→Λd) ~ 2 x 10⁴
- N(K⁻ppn→∧pn) ~ 3 x 10³
 - c.f. 1.7 x 10³ "K⁻pp" → Λp accumulated in E15-2nd (40 G K⁻)

	Λd / Λpn	
ਰ(K⁻ppn)*Br	10 µb	
N(K ⁻ on target)	100 G	
N(target)	2.65 x 10 ²³	
ε (DAQ)	0.9	
ε(trigger)	0.93	
ε(beam)	0.55	
Ω(CDC)	0.27 / 0.077	
ε(CDC)	0.6 / 0.3	
N(K ⁻ ppn)	19 k / 2.8 k	

* improved from E15

Expected Spectrum of K⁻+⁴He

- Similar parameters obtained with the K⁻+³He→Apn (PRC102(2020)044002.) are adopted to K⁻ppn/QF/BG shapes
- K-ppn signal [q-independent] can be seen clearly

Expected Spectrum of K⁻+⁴He

- The signals can be enhanced by selecting 0.3 < q < 0.6 GeV/c
- The K⁻ppn signal will be observed if the σ(K⁻ppn)*Br is more than ~ µb

Schedule & Cost

• We would like to preform the proposed experiment around 2023

Design & construction: ~2022
Commissioning run : 2023
Performance run followed by Physics run : 2023~

- Most of the construction cost will be covered by "MEXT Grant-In-Aid" and "RIKEN internal budget"
 - ✓We are now applying "Specially Promoted Research (特推)"

Summary of the New Project

- •The new project aims to reveal the properties of the light kaonic nuclei from the *KN* to *KNNNN*
 - a powerful probe to understand low energy QCD
 - > the best approach to cold & high-density nuclear matter
- •We take a step-by-step approach:
 - a *KNNN* search via 4He(K-,N) reactions as a first step
 - followed by a spin/parity measurement of the $\overline{K}NN$, soon
 - experimental challenges of $\overline{K}N$, $\overline{K}NNNN$, and $\overline{K}\overline{K}NN$ will also be followed
- We realize the systematic measurements with
 □ a new 4π cylindrical detector system (CDS)
 □ the improved K1.8BR beamline spectrometer

Collaboration of the New Project

H. Asano K. Itahashi, M. Iwasaki, Y. Ma, R. Murayama, H. Outa, F. Sakuma^{*}, T. Yamaga RIKEN Cluster for Pioneering Research, RIKEN, Saitama, 351-0198, Japan

K. Inoue, S. Kawasaki, H. Noumi, K. Shirotori Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan

31

H. Ohnishi, Y. Sada, C. Yoshida Research Center for Electron Photon Science (ELPH), Tohoku University, Sendai, 982-0826, Japan

M. Iio, S. Ishinoto, K. Ozawa, S. Suzuki High Metror Colligation Processing Apan T. Akaishi

Department of Physics, Osaka University, Osaka, 560-0043, Japan

H. Fujioka Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan

M. Bazzi, A. Clozza, C. Curceanu, C. Guaraldo, M. Iliescu, M. Miliucci, A. Scordo, D. Sirghi, F. Sirghi Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy

P. Buehler, M. Simon, E. Widmann, J. Zmeskal Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria

Thank you for your attention!

A first step of the project

