Hadron-hadron scattering length from meson photoproduction

References

 ωN from $\gamma p \rightarrow \omega p$

T. Ishikawa et al., PRC101, 052201 (R) (2020).

 ηN from $\gamma d \rightarrow \eta pn$

S.X. Nakamura, H. Kamano, T. Ishikawa, PRC95, 042201 (R) (2017);

T. Ishikawa et al., Acta Phys. Polon. B51, 27 (2020).

 ηN from $\gamma d \rightarrow \pi^0 \eta d$

T. Ishikawa et al., in preparation

nn from $\gamma^* d \rightarrow \pi^+ nn$

S.X. Nakamura, T. Ishikawa, T. Sato, arXiv: 2003.02497 (2020).

- Takatsugu Ishikawa (ishikawa@Ins.tohoku.ac.jp)
- Research Center for Electron Photon Science (ELPH), Tohoku University, Japan

 Joint THEIA-STRONG2020 and JAEA/Mainz REIMEI Web-Seminar, Nov. 25, 2020

T. Ishikawa

 Introduction ~ low-energy scattering internal structure final-state interaction (FSI) our activities meson-nucleon scattering nn scattering length charge symmetry breaking photoproduction $\gamma d \rightarrow \pi^+ nn$ strategy to extract $\gamma d \rightarrow \pi^+ nn$

electroproduction LT separation possible at the Mainz

Summary

MAMI A1 facility

Introduction

Scattering length

one of the fundamental parameters for describing hadron interactions

low-energy scattering is characterized with the S-wave phase shift $\delta(p)$

$$p\cot\delta(p) = -\frac{1}{a} + \frac{1}{2}rp^2 + O(p^4)$$

a: scattering length for meson-nucleon scattering

r : effective range

negative (positive) α provides attraction (repulsion)

Q is positive if a bound state exists

Structure of a hadron

resonances

T. Ishikawa

T. Hyodo, PRL111, 132002 (2013).

Final state interaction

 the final-state interaction (FSI) is often utilized when a direct scattering experiment is difficult to be realized

1) low relative momentum between the two hadrons of interest

- 2) small or well-known FSI effects for the others
- 3) well-known production mechanism effects

Our activities

• ωN scattering length from $\gamma p \rightarrow \omega p$

complex ωN scattering parameters are determined for the first time

- 1) low relative momentum between ωN
- 2) no FSI effects for others (ωN alone in the final states)

3) insensitive production mechanism effects

T. Ishikawa

Our activity ~ ηN (2)

2) little FSI effects for others (πN)

T. Ishikawa

nn scattering length

Charge symmetry breaking

Charge Symmetry Breaking (CSB)

CS: invariance under interchange of *u* and *d* quarks

due to the difference of *u*-*d* masses and EM effects *n-p* mass difference of 1.3 MeV charge dependence of nuclear force: a few percent (ρ^0 - ω mixing and *n*-*p* mass difference) G.A. Miller and W.T.H. van Oers arXiv: nucl-th/9409013. 0.7-MeV difference in *B* between ³H and ³He G.A. Miller and W.T.H. van Oers arXiv: nucl-th/9409013. $\begin{array}{l} A_n(\theta_n) \neq A_p(\theta_p) \text{ at } \theta_n = \theta_p \text{ for } np \text{ scattering} \\ \textbf{R. Abegg et al., PRL56, 2571 (1986); PRD39, 2464 (1989).} \\ d\sigma/d\Omega_{\pi}(\theta) \neq d\sigma/d\Omega_{\pi}(\pi - \theta) \text{ for } np \rightarrow d\pi^0 \end{array}$ A.K. Opper et al., PRL91, 212302 (2003). hypernuclear systems 0.3-MeV difference in E_x between ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He T.O. Yamamoto et al., PRL115, 222501 (2015); A. Esser et al., PRL114, 232501 (2015). Nov. 25, 2020 T. Ishikawa

Charge symmetry breaking

low-energy NN scattering

characterized by the scattering length *a* and effective range *r*

$$p \cot \delta(p) = -\frac{1}{a} + \frac{1}{2}r p^2 + O(p^4)$$

the sign is different in meson-nucleon scattering

scattering parameters for the spin-singlet states statistical uncertainty $a_{m} = -18.9 \pm 0.4 \text{ fm}, \quad r_{m} = 2.75 \pm 0.11 \text{ fm} \text{ for } nn$

$$a_{np} = -23.74 \pm 0.02 \text{ fm}, r_{np} = 2.77 \pm 0.05 \text{ fm}$$
 for np

$$a_{pp} = -17.3 \pm 0.4 \text{ fm}, \quad r_{pp} = 2.85 \pm 0.04 \text{ fm} \text{ for } pp$$

systematic uncertainty of removing the EM effects R. Machleidt and I. Slaus, JPG: NPP27, R69 (2001). 5.6-fm CIB: np and nn (pp) 1.6-fm CSB:nn and pp

T. Ishikawa

On scattering length

a_{nn} determination: $-19 \sim -16$ fm

direct measurement

W.I. Furman et al., JPG28, 2627 (2002); A.Yu. Muzichka et al., NPA789, 30 (2007).

nn scattering: almost impossible

indirect measurement

T. Ishikawa

extraction from $nd \rightarrow nnp$ (Faddeev eq.)

 $a_{nn} = -16.1 \pm 0.4 \text{ fm} (E_n = 25.3 \text{ MeV}, np \text{ detected}@Bonn)$ V. Huhn et al., PRL85, 1190 (2000). $a_{nn} = -18.7 \pm 0.7 \text{ fm} (E_n = 13.0 \text{ MeV}, nnp \text{ detected}@TUNL)$ D.E. Gonzalez Trotter et al., PRC73, 034001 (2006). $a_{nn} = -16.5 \pm 0.9 \text{ fm} (E_n = 17.4 \text{ MeV}, p \text{ detected}@Bonn)$ W. Witsch et al., PRC74, 014001 (2006).

 $\pi^- d \rightarrow nn\gamma$ C.R. Howell et al., PLB444, 252 (1998). $a_{nn} = -18.59 \pm 0.40 \text{ fm} \text{ (stopped } \pi, n\gamma \text{ detected@LAMPF)}$

the elementary (KR) amplitude is well determined for $\gamma p \rightarrow \pi^+ n$ FSI neutrons: ~2.4 MeV (efficiencies are measured for 5~13 MeV) cross sections for $pp \rightarrow pp\gamma$ (analogous) is overestimated by 40% ? E.S. Konobeevski et al., arXiv: 1703.00519 (2017). No KR in $pp \rightarrow pp\gamma$ New measurement of a_{nn}

a_{nn} determination using $\gamma d \rightarrow \pi^+ nn$

pointed out by Lensky et al. for the first time based on chiral perturbation theory too low E_{γ} (20 MeV above the threshold, $p_{\pi} < 80 \text{ MeV/c}$) experimental advantage our consideration no need to detect neutrons rather higher E_{γ} (200~300 MeV) between the threshold (~150 MeV) and Δ production (~340 MeV) 250 MeV/0 π photoproduction π ~250 MeV/c well-known π production amplitude n d =high nn FSI probability n *n*~o MeV/c

weak πn FSI

T. Ishikawa

S.X. Nakamura, T. Ishikawa, T. Sato, arXiv: 2003.02497 (2020). Nov. 25, 2020

~o MeV/c

14

low-energy

nn scattering

$\gamma d \rightarrow \pi^+ nn$

Formalism

differential cross section

$$\frac{d^{2}\sigma(E_{\gamma})}{d\Omega_{\vec{k}}dM_{nn}} = \frac{1}{12} \sum_{\lambda,s_{d}} \sum_{s_{1},s_{2}} \frac{(2\pi)^{4}}{4E_{\gamma}} \frac{1}{2E_{d}(\vec{p}_{d})} \int d\Omega_{\vec{p}_{nn}} \frac{p_{nn}k^{2}m_{n}^{2}}{|kE - n\vec{q}\cdot\hat{k}E_{\pi}(\vec{k})|} |M(E)|^{2}$$
for
$$\gamma(\vec{q}) + d(\vec{p}_{d}) \rightarrow \pi^{+}(\vec{k}) + n_{1}(\vec{p}_{1}) + n_{2}(\vec{p}_{2})$$

$$M(E) = \sqrt{\frac{8E_{\gamma}E_{d}(\vec{p}_{d})E_{\pi}(\vec{k})E_{n}(\vec{p}_{1})E_{n}(\vec{p}_{2})}{m_{n}^{2}}}$$

$$\times \left(t_{imp}(E) + t_{NN}(E) + t_{\pi N}(E) + \{\text{exchange terms}\}\right)$$
initial spins γ, d
identity of n

$$\sum_{\gamma(\vec{q},\lambda)} \sum_{\substack{N_{i}\vec{\psi}_{i},s_{i},l_{i}\\ d(\vec{\psi}_{d},s_{i})}} \sum_{\gamma(\vec{q},\lambda)} \sum_{\substack{N_{i}\vec{\psi}_{i},s_{i},l_{i}\\ d(\vec{\psi}_{d},s_{i})}} NN rescattering}$$
(Nov. 25, 2020 16)

Formalism

$\gamma N \rightarrow \pi N$ production amplitude DCC, CM12

NN scattering amplitude

CD-Bonn, Reid93, Nijmegen I, Nijmegen II

 πN scattering amplitude

DCC

T. Ishikawa

meson-exchange current considered higher order effects

not considered

Formalism $\gamma N \rightarrow \pi N$ production amplitude DCC, CM12

elementary amplitudes: of primary importance

 $\gamma d \rightarrow \pi^+ nn$ cross sections at 250 MeV

Results

 $\gamma d \rightarrow \pi^+ nn$ cross sections at 250 MeV

Results

 $\gamma d \rightarrow \pi^+ nn$ cross sections at 250 MeV

 $\pi N \rightarrow \pi N$ rescattering effect is discernible at E_{γ} =300 MeV $\gamma N \rightarrow \pi N$ production amplitude below the πN threshold contributes ~2% to the cross section at E_{γ} =200 MeV the incident energy of 250 MeV (and θ_{π} =0°) is the best *T. Ishikawa* Nov. 25, 2020 21

$d \rightarrow \pi^+ nn$ cross sections for different a_{nn}

 a_{nn}, r_{nn} and $d^2\sigma / dM_{nn} / d\Omega_{\pi}$

sensitive to $d^2\sigma/dM_{nn}/d\Omega_{\pi}$ below $\delta M_{nn}=0.3$ MeV $a_{nn}=-20$ fm, -19 fm, -18 fm, -17 fm, -16 fm $r_{nn}=2.75$ fm

T. Ishikawa

$\rightarrow \pi^+ nn$ cross sections for different r_{nn}

 a_{nn}, r_{nn} and $d^2\sigma / dM_{nn} / d\Omega_{\pi}$

sensitive to $d^2\sigma/dM_{nn}/d\Omega_{\pi}$ from $\delta M_{nn}=2$ to 10 MeV *a_{nn}*=**-18.9 fm** r_{nn} =1 fm, 2 fm, 3 fm, 4 fm T. Ishikawa

- a_{nn} , r_{nn} and $d^2 \sigma / dM_{nn} / d\Omega_{\pi}$ R_{th} with 2% error, resolved into ΔM_{nn} =0.04 MeV can determine a_{nn} and r_{nn} with the uncertainties σ_a and σ_r of ±0.21 fm and ±0.06 fm, respectively
- σ_a =0.13~0.27 fm, σ_r =0.23~0.06 fm for ΔM_{nn} =0.01~0.08 MeV
- σ_a and σ_r are independent of a_{nn} and r_{nn} , respectively σ_a gradually increases with increase of a_{nn} σ_r rapidly increases with increase of r_{nn} theoretical uncertainty does not affect σ_a so much

Strategy to extract $\gamma d \rightarrow \pi^+ nn$

Strategy to extract $\gamma d \rightarrow \pi^+ nn$ T. Ishikawa

Nov. 25, 2020 25

Electroproduction

Requirements

- High momentum resolution for the incident photon & emitted positive pion: ~0.1 MeV/c (5x10⁻⁴) or better
- 2. Precision for the cross section: ~2% or higher
- difficult to achieve such a high resolution at the real photon facilities in the world

electroproduction is considered instead at the Mainz MAMI A1 facility

Electroproduction

Mainz MAMI A1 facility

momentum resolution electron beam: ~10⁻⁶ spectrometer: ~10⁻⁴

high statistics enables us to use a convolution technique even if such a high resolution is not achieved

Electron scattering

triple-differential cross section for $(e, e'\pi)$

$$\frac{d^{3}\sigma^{ed}}{dE_{e'}d\Omega_{e'}d\Omega_{\pi}} = \Gamma_{\gamma} \left\{ \frac{d\sigma_{T}^{\gamma d}}{d\Omega_{\pi}} + \epsilon_{L} \frac{d\sigma_{L}^{\gamma d}}{d\Omega_{\pi}} + \sqrt{2\epsilon_{L}(1+\epsilon_{T})} \frac{d\sigma_{LT}^{\gamma d}}{d\Omega_{\pi}} \cos \phi_{\pi} + \epsilon_{T} \frac{d\sigma_{TT}^{\gamma d}}{d\Omega_{\pi}} \cos 2\phi_{\pi} \right\}$$

for a unpolarized electron beam
$$\epsilon_{T} = \left(1 + \frac{2|\vec{q}|^{2}}{Q^{2}} \tan^{2} \frac{\theta_{e'}}{2} \right)^{-1} \text{ and } \epsilon_{L} = \frac{Q^{2}}{\omega^{2}} \epsilon_{T}$$

$$\epsilon_{T} = \epsilon \left(\Gamma_{\gamma} = \frac{\alpha}{2\pi^{2}Q^{2}} \frac{E_{\gamma}}{1-\epsilon_{T}} \frac{E_{e'}}{E_{e}} \right)^{-1} \text{ and } E_{\gamma} = \omega - \frac{Q^{2}}{2m_{d}}$$

to give the same W

Electron scattering

triple-differential cross section for $(e, e'\pi)$

$$\frac{d^{3}\sigma^{ed}}{dE_{e'}d\Omega_{e'}d\Omega_{\pi}} = \Gamma_{\gamma} \left\{ \frac{d\sigma_{\rm T}^{\gamma d}}{d\Omega_{\pi}} + \epsilon_{\rm L} \frac{d\sigma_{\rm L}^{\gamma d}}{d\Omega_{\pi}} + \sqrt{2\epsilon_{\rm L}\left(1+\epsilon_{\rm T}\right)} \frac{d\sigma_{\rm LT}^{\gamma d}}{d\Omega_{\pi}} \cos\phi_{\pi} + \epsilon_{\rm T} \frac{d\sigma_{\rm TT}^{\gamma d}}{d\Omega_{\pi}} \cos 2\phi_{\pi} \right\}$$

$$\frac{d\sigma_{\mathrm{LT}}^{\gamma d}}{d\Omega_{\pi}} \propto \sin \theta_{\pi} \quad \text{and} \quad \frac{d\sigma_{\mathrm{TT}}^{\gamma d}}{d\Omega_{\pi}} \propto \sin^{2} \theta_{\pi}$$
$$\frac{d^{3} \sigma^{ed}}{dE_{e'} d\Omega_{e'} d\Omega_{\pi}} = \Gamma_{\gamma} \left\{ \frac{d\sigma_{\mathrm{T}}^{\gamma d}}{d\Omega_{\pi}} + \epsilon_{\mathrm{L}} \frac{d\sigma_{\mathrm{L}}^{\gamma d}}{d\Omega_{\pi}} \right\} \quad \text{for } \theta_{\pi} = 0$$

 π^+ should be detected in the same direction as the virtual photon

 $\epsilon_{\rm L} \frac{d\sigma_{\rm T}^{\gamma d}}{d\Omega_{\pi}} = \frac{d\sigma_{\rm T}^{\gamma d}}{d\Omega}$ for available placements of spectrometers

Electroproduction

Three spectrometers

	А	В	С		
	QSDD	D	QSDD		
Γ]	1.51	1.50	1.40		
MeV/c]	735	870	551		
m]	10.75	12.03	8.53		
	18°	7°	18°		
	160°	62.4°	160°		
%]	20	15	25		
nsr]	28	5.6	28		
mrad]	± 70	±70	± 70		
mrad]	± 100	±20	± 100		
nsr]	28	5.6	28		
mm]	50	50	50		
	10^{-4}	10^{-4}	10^{-4}		
mrad]	≤ 3	≤ 3	≤ 3		
mm]	3 – 5	1	3 – 5		
	[] MeV/c] n] %] nsr] nrad] nrad] nsr] nm] nrad] nm]	AQSDD1.51MeV/c]735n]10.7518°160°%]20nsr]28nrad]±70nrad]±100nsr]28nm]5010 ⁻⁴ nrad]≤ 3nm]3 - 5	ABQSDDD1.511.50MeV/c]73510.7512.0310.7512.03160°62.4°160°62.4°160°5.6nrad] ± 70 ± 70 ± 70 nrad] ± 70 ± 100 ± 20 nsr]285.6nm]5010 ⁻⁴ 10 ⁻⁴ 10^{-4} ≤ 3 nrad] ≤ 3 1 $3 - 5$		

T. Ishikawa

I. Ewald, Phd thesis, Mainz Univ. (2000). Nov. 25, 2020

30

Electron scattering

e' and π^+ detected with SpekA and SpekB, respectively incident

LT separation

taking advantage of the linear $\epsilon_{\rm L}$ dependence

$$\frac{d\sigma_{\rm T}^{\gamma d}}{d\Omega_{\pi}}$$
 can be obtained from several

$$\frac{d^{3}\sigma^{ed}}{dE_{e'} d\Omega_{e'} d\Omega_{\pi}} = \Gamma_{\gamma} \left\{ \frac{d\sigma_{T}^{\gamma d}}{d\Omega_{\pi}} + \epsilon_{L} \frac{d\sigma_{L}^{\gamma d}}{d\Omega_{\pi}} \right\} \text{ for } \theta_{\pi} = 0^{\circ}$$

$$\frac{d^{3}\sigma^{ed}}{dE_{e'} d\Omega_{e'} d\Omega_{\pi}} = 0^{\circ}$$

$$\frac{d^{3}\sigma^{ed}}{dE_{e'} d\Omega_{e'} d\Omega_{\pi}} = 0^{\circ}$$

for different $\epsilon_{\rm L}$ and same Q^2 like Rosenbluth separation

E_e (GeV)	$E_{e'}$ (GeV)	$\theta_{e'}$	k_{γ} (GeV)	$\omega({\rm GeV})$	$Q^2 (\text{GeV}^2/c^2)$	$\Gamma_{\gamma} (10^{-3})$	ϵ_{T}	$\epsilon_{\rm L}$	θ_{γ} (deg)
0.3020	0.0493	33.8	0.2500	0.2527	0.0050	0.0042	0.2836	0.0224	6.0
0.3220	0.0693	27.4	0.2500	0.2527	0.0050	0.0064	0.3795	0.0299	7.0
0.3487	0.0960	22.3	0.2500	0.2527	0.0050	0.0098	0.4832	0.0381	8.0
0.3847	0.1320	18.1	0.2500	0.2527	0.0050	0.0154	0.5899	0.0465	9.0
0.4350	0.1823	14.4	0.2500	0.2527	0.0050	0.0251	0.6937	0.0547	10.0

SpekB covers 2.3° SpekA covers 11.5°

 $d\Omega_{c}$

C LT separation

j	E_e (GeV)	$E_{e'}$ (GeV)	$\theta_{e'}$	k_{γ} (GeV)	$\omega({\rm GeV})$	$Q^2 (\text{GeV}^2/c^2)$	$\Gamma_{\gamma} (10^{-3})$	ϵ_{T}	$\epsilon_{\rm L}$	θ_{γ} (deg)
_	0.3020	0.0493	33.8	0.2500	0.2527	0.0050	0.0042	0.2836	0.0224	6.0
	0.3220	0.0693	27.4	0.2500	0.2527	0.0050	0.0064	0.3795	0.0299	7.0
	0.3487	0.0960	22.3	0.2500	0.2527	0.0050	0.0098	0.4832	0.0381	8.0
	0.3847	0.1320	18.1	0.2500	0.2527	0.0050	0.0154	0.5899	0.0465	9.0
	0.4350	0.1823	14.4	0.2500	0.2527	0.0050	0.0251	0.6937	0.0547	10.0

A candidate for spectrometer setting Electron beam: 385 MeV/c SpekA: 18°, 132 MeV/c SpekB: 9°, 185 MeV/c **Possible background contributions** Møller scattering out of range **Coulomb scattering of post-bremsstrahlung** electrons out of range

 π^+ , e⁻ accidental coincidence for $\gamma d \rightarrow \pi^+ nn$ T. Ishikawa

kinematic coverage for

e⁻ beam: 385 MeV/c, SpekA: 18°, 132 MeV/c, SpekB: 9°, 185 MeV/c

E_v dependence: linear

T. Ishikawa

OLT separation

Q² dependence: linear

θ_π dependence: quadratic in T and L (almost linear for θ_π < 0.5°) linear in LT and TT

OLT separation

a wide kinematic coverage enables us to get the data at $E_v=250$ MeV, $Q^2=0$ GeV²/c², $\theta_{\pi}=0^{\circ}$

the following conditions ~ μ b/sr/MeV at δM_{nn} =2 MeV $\sigma_L \sim 4\sigma_T$ and $\varepsilon_L: 0.03 \sim 0.07$ requires x10 to get the limit at 0 $0.04 \text{ MeV } \delta M_{nn} \text{ bin}$ 2.0 deg = 1.2 msr tolerance for π^+ 50 mm thick liquid $D_2 = 2.6 b^{-1}$ 40 µA for a beam current $\Gamma_v \sim 15 \times 10^{-6} \text{ MeV}^{-1} \text{ sr}^{-1} \times 28 \text{ msr for } \gamma^* \text{ flux}$ shows a 20-day measurement to achieve 2% precision at δM_{nn} =2 MeV giving δa_{nn} =0.2 fm (5-day: δa_{nn}=0.4 fm) Nov. 25, 2020 38 T. Ishikawa

Summary

Meson photoproduction

hadron-hadron scattering parameters can be determined using FSI

it is useful when a direct scattering experiment is difficult to be realized

Our activities

 $\omega N \operatorname{from} \gamma p \rightarrow \omega p$

T. Ishikawa et al., PRC101, 052201 (R) (2020).

 ηN from $\gamma d \rightarrow \eta pn$

S.X. Nakamura, H. Kamano, T. Ishikawa, PRC95, 042201 (R) (2017); T. Ishikawa et al., Acta Phys. Polon. B51, 27 (2020).

 $\eta N \operatorname{from} \gamma d {\rightarrow} \pi^0 \eta d$

T. Ishikawa et al., in preparation $nn \; {
m from} \; \gamma^* d {
ightarrow} \pi^+ nn$

S.X. Nakamura, T. Ishikawa, T. Sato, arXiv: 2003.02497 (2020).

Summary ~ nn

photoproduction

possibility of extracting a_{nn} and r_{nn} is discussed

 $\gamma d \rightarrow \pi^+ nn$ at $\theta_{\pi} = 0^{\circ}$ and $E_{\gamma} = 250$ MeV is suitable

 $R_{\rm th}, d^2\sigma/dM_{nn}/d\Omega_{\pi}$ normalized by $\gamma p \rightarrow \pi^+ n$ cross sections and the deuteron wave function, with 2% error, resolved into ΔM_{nn} =0.04 MeV can determine a_{nn} and r_{nn} with the uncertainties of ±0.21 fm and ±0.06 fm, respectively

electroproduction

Such high M_{nn} resolution can be achieved with an electron scattering experiment at Mainz A1 facility

 $d(e,e' \pi^+)$ cross sections at different ϵ_L values but the same $Q^2 \simeq 0$ gives $d^2 \sigma_T / dM_{nn} / d\Omega_{\pi}$ s corresponding to the photoproduction cross sections

S.X. Nakamura, T. Ishikawa, T. Sato, arXiv: 2003.02497 T. Ishikawa Nov. 25, 2020 41

Backup Slides~nn

 $\gamma d \rightarrow \pi^+ nn$ cross sections at 200 MeV

Results

 $\gamma d \rightarrow \pi^+ nn$ cross sections at 300 MeV

 $\pi N \rightarrow \pi N$ rescattering effects: discernible at this energy the incident energy of 250 MeV is the best

T. Ishikawa

$\gamma d \rightarrow \pi^+ nn$ cross sections for different pion-emission angles

small M_{nn} region, the most sensitive to the nn scattering length, the cross section is significantly larger for smaller emission angle

the pion emission angle of 0 deg is the best 250 MeV & 0 deg is the optimal setting *T. Ishikawa*Nov. 25, 2020 45

different NN potentials

different NN potentials

different $\gamma p \rightarrow \pi^+ n$ amplitudes

T. Ishikawa

DCC and Chew-Mandelstam (CM12) parametrization (on-shell amplitude is used for the off-shell one here) uncertainty from different on-shell $\gamma p \rightarrow \pi^+ n$ amplitude can be removed by using R_{th}

off-shell effects from $\gamma p \rightarrow \pi^+ n$

off-shell $\gamma p \rightarrow \pi^+ n$ amplitude is replaced by on-shell one

meson exchange current

higher order effects

T. Ishikawa

relative deviation: $0.002(M_{nn} - 2m_n) / \text{MeV}$

Monte Carlo simulation for estimating a_{nn} and r_{nn} uncertainties guadratic sum of theoretical

uncertainties

 r_{nn}, r_{nn} and $d^2\sigma / dM_{nn} / d\Omega_{\pi}$

1) $R_{\text{exp}}^{\circ}(a_{nn}^{\circ}, r_{nn}^{\circ}; M_{nn}) \equiv R_{\text{th}}(a_{nn}^{\circ}, r_{nn}^{\circ}; M_{nn}) + g\Delta R_{\text{th}}^{\text{all}}(M_{nn})$ g: random number

2) $R_{exp}^{\circ}(a_{nn}^{\circ}, r_{nn}^{\circ}; i)$ for *i*-th M_{nn} bin average of $R_{exp}^{\circ}(a_{nn}^{\circ}, r_{nn}; M_{nn})$ over the bin width 3) $R_{exp}(i)$ is generated from $R_{exp}^{\circ}(a_{nn}^{\circ}, r_{nn}^{\circ}; i)$ with a statistical fluctuation corresponding to the given precision

4) a_{nn} and r_{nn} are simultaneously searched for so that $R_{exp}(a_{nn}, r_{nn}; M_{nn})$ reproduces $R_{exp}(i)$ the obtained $a_{nn}(r_{nn})$ distribution T. Ishikawa provides the $a_{nn}(r_{nn})$ uncertainty Nov. 25, 2020 50

all the uncertainties

standard deviation is given as an error curve from each source

- different NN potentials
- ······ off-shell effects
- ---- different on-shell amplitudes
 - ----- meson exchange current

T. Ishikawa

$d \rightarrow \pi^+ nn$ cross sections for different r_{nn}

 a_{nn}, r_{nn} and $d^2\sigma / dM_{nn} / d\Omega_{\pi}$

less sensitive to $d^2\sigma/dM_{nn}/d\Omega_{\pi}$ below δM_{nn} =0.3 MeV a_{nn} =-18.9 fm r_{nn} =1 fm, 2 fm, 3 fm, 4 fm

T. Ishikawa

Backup slides ~ ωN

ω meson plays an important role in describing short-range repulsive central force, and strong spin-orbit (LS) force of the NN interaction:

$$V_{\omega} \simeq \frac{g_{\omega}^2}{q^2 + m_{\omega}^2} \left[1 - 3 \frac{\vec{L} \cdot \vec{S}}{2M^2} \right]$$

one of the best established hadrons nevertheless, scattering between the ω meson and nucleon is not well-known

Only one experiment deduce the ωN scattering length assuming the vector dominance model:

59

Only one experiment deduce the ωN scattering length assuming the vector dominance model:

$$\sigma = \frac{q}{k} \frac{4\alpha \pi^2}{\gamma^2} |a_{\omega p}|^2 \qquad |a_{\omega p}| = 0.82 \pm 0.03 \text{ fm}$$
I.I. Strakovsky et al. PRC91, 045207 (2015)

 $k\colon$ incident γ momentum in the CM frame

- $q\colon \omega$ momentum in the CM frame
- α : fine structure constant

T. Ishikawa

 $\gamma = 8.53 \pm 0.14$: $\gamma \omega$ coupling constant

Only the absolute value is provided, the finite ω width in the final state is not taken into account

effective Lagrangian approach (99) QCD sum-rule analysis (97) coupled-channel analysis (L: 02, S: 05, P: 09) vector dominance model (15)

61

$\odot \omega A$ potential

The imaginary part is deduced from the

transparency reatio $\gamma A \rightarrow \omega X$: $T_A = \frac{\sigma_A}{A\sigma_{11}}$

V. Metag et al., Prog. Part. Nucl. Phys. 97, 199 (2017).

62

Scattering parameters

determine

the low-energy S-wave scattering parameters from

- the shape of the excitation function of the total cross section for $\gamma p \rightarrow \omega p$
- near the threshold

T. Ishikawa

- through
 - the final-state interaction $(\omega p \text{ rescattering})$
 - excitation function for $\gamma p \rightarrow \omega p$ without FSI ω width is taken into account

Only one experiment deduce the ωN scattering length assuming the vector dominance model:

T. Ishikawa

Selection ~ $\gamma p \rightarrow \omega p \rightarrow \pi^0 \gamma p$

- 1. 3 neutral particles and 1 charged particle
- 2. neutral pion: $\gamma\gamma$ decay, $M_{\gamma\gamma}$: 50~220 MeV
- 3. additional photon: > 200 MeV
- 4. time difference is less than $3\sigma_t$ between every 2 neutral clusters out of 3
- 4. *p* is detected with SPIDER (response of SCISSORS III is not required) time delay is larger than 0 ns wrt average $\gamma\gamma\gamma$ time
- 5. sideband background subtraction to remove accidental coincidence between STB-Tagger II and FOREST

photon be

Selection ~ $\gamma p \rightarrow \omega p \rightarrow \gamma$

- 1. 3 neutral particles and 1 charged particle
- 2. neutral pion: $\gamma\gamma$ decay, $M_{\gamma\gamma}$: 50~220 MeV
- 3. additional photon: > 200 MeV

Nov. 25, 2020 66

Further event selection: a kinematic fit with 5 constraints is applied energy and momentum conservation (4) $\gamma\gamma$ invariant mass is m_{π^0} (1) χ^2 probability is higher than 0.1

$\odot \pi^0 \gamma$ invariant mass

T. Ishikawa

by a sum of ω production $\pi^0\pi^0$ production (1 γ missing)

O Differential cross sections

$d\sigma/d\Omega$ as a function of $\cos\theta$

$$\frac{d\sigma}{d\Omega}\left(\cos\theta\right) = \frac{d\sigma}{2\pi d\cos\theta}\left(\cos\theta\right) = \frac{N_{\omega}\left(\cos\theta\right)}{2\pi\Delta\cos\theta N_{\gamma}N_{\tau}\eta_{\rm acc}\left(\cos\theta\right)} \text{BR}(\omega \to \pi^{0}\gamma)\text{BR}(\pi^{0} \to \gamma\gamma)$$

acceptance

T. Ishikawa

O Differential cross sections

$d\sigma/d\Omega$ as a function of $\cos\theta$

Systematic uncertainties

- 1) angular distribution in CM [decay angular distribution is flat]
- 2) $\pi\pi$ background level
- 3) kinematic fit

T. Ishikawa

- 4) lower limit of $\pi\gamma$ invariant mass
- 5) target position
- 6) energy loss of the emitted proton
- 7) number of target protons
 8) number of incident photons including DAQ efficiency

Total cross section

integrating $d\sigma/d\Omega$

Excitation function & $a_{\omega N}$

systematic uncertainty is estimated from that of the mean incident energy $(\pm 3\%)$

Parameters	Re $a_{\omega p}$ (fm)	$\operatorname{Im} a_{\omega p} (\mathrm{fm})$	Re $r_{\omega p}$ (fm)	$\operatorname{Im} r_{\omega p} (\mathrm{fm})$
$\Lambda = 0.8 \text{ GeV}/c$	$-0.97^{+0.16}_{-0.16}$	$+0.07^{+0.15}_{-0.14}^{+0.15}_{-0.09}^{+0.15}_{-0.09}$	$+2.78^{+0.67}_{-0.54}^{+0.11}_{-0.12}$	$-0.01^{+0.46+0.06}_{-0.50-0.00}$
$\Lambda = 0.6 \text{ GeV}/c$	$-1.11_{-0.16-0.04}^{+0.14+0.03}$	$+0.12^{+0.17+0.12}_{-0.17-0.11}$	$+2.78^{+0.81}_{-0.57}^{+0.04}_{-0.16}$	$+0.00^{+0.44}_{-0.54}^{+0.11}_{-0.54}$
$\Lambda = 1.0 \text{ GeV}/c$	$-0.89^{+0.16}_{-0.18}^{+0.01}_{-0.00}$	$+0.04^{+0.14}_{-0.12}^{+0.13}_{-0.04}$	$+2.78^{+0.62}_{-0.51}^{+0.23}_{-0.09}$	$+0.01^{+0.47}_{-0.50}^{+0.11}_{-0.50}$
<i>P</i> -wave contribution	$-0.96^{+0.16+0.04}_{-0.16-0.01}$	$+0.10^{+0.14}_{-0.14}$	$+2.85^{+0.77}_{-0.53}$	0.00
Single <i>N</i> [*] contribution	$-0.87^{+0.15}_{-0.22}$	$+0.22^{+0.14}_{-0.12}^{+0.14}_{-0.11}$	$+2.69^{+0.62}_{-0.55}^{+0.06}_{-0.12}$	$-0.04^{+0.48}_{-0.69}^{+0.04}_{-0.14}$

the parameters do not change among the realistic $\boldsymbol{\Lambda}$ cut-off values

- Im[$r_{\omega N}$] is consistent with 0
- P-wave contribution is small

the parameters do not change with an extreme energy-dep of V (single N* resonance near the threshold, M=1.7 GeV, $\Gamma=0.2$ GeV)

\bigcirc Summary of $a_{\omega N}$

effective Lagrangian approach (99)

QCD sum-rule analysis (97) coupled-channel analysis (L: 02, S: 05, P: 09) vector dominance model (15)

75

$\odot \omega N$ interaction

- seems inconsistent between attractive results
- **1.** ωA potential from excitation function
 - for ω photoproduction from nuclei
- 2. mass decrease by $9.2\% \pm 0.2\%$ from line-shape analysi in dilepton spectroscopy
- possible reasons:
 - spin-dependent terms?
 - in-medium mass modification can be disguished from the basic interaction?

Backup slides ~ nN (1)

N(1535) with J^π=1/2⁻ chiral partner of the nucleon N(940) ? N(940) and N(1535) degenerate at high density and/or high temperature

strongly couples to the eta meson (η) and nucleon (N)

T. Ishikawa

N(1535) with J^π=1/2⁻ chiral partner of the nucleon N(940) ? N(940) and N(1535) degenerate at high density and/or high temperature

composite:

molecule-like state

strongly couples to the eta meson (η) and nucleon (N)

 $X_{\eta N} = 0.04 + i0.37$ T. Sekihara *et al.*, PRC 93, 035204 (2016).

T. Ishikawa

nN scattering length

eta-nucleon scattering lm: ~ 0.25 fm **Re: scattered**

combined analysis of cross sections for

$$\pi N \to \pi N, \pi N \to \eta N,$$

 $\gamma N \to \pi N, \gamma N \to \eta N$

T. Ishikawa

$\circ \eta N$ scattering length

proposed kinematics for $a_{\eta N}$ determination using $\gamma d \rightarrow \eta p n$

ηN scattering length

differential cross section for for $\gamma d \rightarrow \eta pn$ as a function of ηn invariant mass

82

- 1) energy-tagged photon beam
- 2) eta-meson identification (EM calorimeter)
- 3) forward proton detection (spectrometer)

experiments

1) energy-tagged photon beam

- 2) eta-meson identification (EM calorimeter)
- 3) forward proton detection (spectrometer)

the energy of each produced photon: determined by detecting the corresponding post-bremsstrahlung electron

 $E_{\gamma} = 0.80 \sim 1.25 \text{ GeV}$

T. Ishikawa et al., NIMA 622, 1 (2010); T. Ishikawa et al., NIMA 811, 124 (2016); Y. Matsumura et al., NIMA 902, 103 (2018); Y. Obara et al., NIMA 922, 108 (2019); T. Ishikawa Nov. 25, 2020 84

- 1) energy-tagged photon beam
- 2) eta-meson identification (EM calorimeter)

3) forward proton detection (spectrometer)

85

- 1) energy-tagged photon beam
- 2) eta-meson identification (EM calorimeter)
- 3) forward proton detection (spectrometer)

data acquired two particles in FOREST

	hydrogen	deuterium	empty
2017.10.30~11.20	0.40 G	0.31 G	0.02 G
2017.11.23~11.30	0.20 G	—	0.05 G
2018.06.07~06.25	0.47 G	0.49 G	0.09 G
2018.10.12~11.04	0.75 G	0.88 G	0.07 G
2019.04.08~05.06	0.75 G	1.39 G	0.12 G
2020.04.09~	> 0.77 G	> 2.58 G	> 0.08 G

current statistics: $\sim \frac{1}{2}$ of the original plan

O current status

ηn invariant mass distribution

88

Backup slides ~ nN (2)

Alternative method

coherent $\pi^0\eta$ photoproduction on the deuteron $(\gamma d \rightarrow \pi^0\eta d)$

- 1. no Δ-Kroll-Ruderman or meson-pole Born term
- 2. final-state interaction is significantly enhanced

Experiment ~ photo beam

determined by detecting the corresponding post-bremsstrahlung electron

 $E_{\gamma} = 0.74 \sim 1.15 \text{ GeV} \ (E_{\gamma}^{\text{thr}} \simeq 0.81 \text{ GeV})$

tagging intensity ~ 20 MHz (photon intensity ~ 10 MHz)

T. Ishikawa *et al.*, NIMA 622, 1 (2010); T. Ishikawa *et al.*, NIMA 811, 124 (2016); Y. Matsumura *et al.*, NIMA 902, 103 (2018); Y. Obara *et al.*, NIMA 922, 108 (2019).

T. Ishikawa

Experiment ~ detector

T. Ishikawa

event selection for $\gamma d \rightarrow \pi^0 \eta d$

- 1. 4 neutral particles and 1 charged particle
- 2. π^0 : $\gamma\gamma$ decay
- 3. η: γγ decay
- 4. time difference is less than $3\sigma_t$ between every two neutral clusters out of 4

SCISSORS III

93

Backward Gamma

Nov. 25, 2020

- d is detected with SPIDER time delay is longer than 1 ns wrt γγγγ energy deposit is higher than 2E_{mip}
- 6. sideband background subtraction photon between STB-Tagger II and FOREST

6C kinematic fit (KF):

four momentum conservation, $M_{\gamma\gamma}^{(1)} = M_{\pi} M_{\gamma\gamma}^{(2)} = M_{\eta}$

- 1. π^2 probability > 0.2 in the kinematic fit for $\gamma d \rightarrow \pi^0 \eta d$
- 2. π^2 probability < 0.01 in the kinematic fit for $\gamma p' \rightarrow \pi^0 \eta p$ P_x , P_y , P_z measurement: 0±40 MeV/*c* for p'

Total cross section

excitation function below 1 GeV is well-reproduced by the theoretical calculation with the final-state

Extraction of a_{nN}

the ηN scattering effect is assumed to be factorized in distortion from the impulse approximation

Differential cross section

angular distribution of deuteron emission is not reproduced, suggesting a sequential process:

Ontermediate state

prominent enhancement near the ηd threshold: $\gamma d \rightarrow \mathcal{D}_{IV} \rightarrow \pi^0 \mathcal{D}_{IS} \rightarrow \pi^0 \eta d$ for $M_{\eta d} < 2.47$ GeV $M_N + M_N^*$

Extraction of and

ηd scattering is investigated to fit the distorted phase space to the data

