Measurement of Hyperon-nucleon scatterings at J-PARC

Koji Miwa (Tohoku univ.) for the E40 collaboration

CONTENTS

Introduction

" Brief review of hyperon-proton scattering experiment

- Importance of hyperon-nucleon (YN) interaction study
Σ p scattering experiment at J-PARC
- Analysis status of scattering channels
- Prospects of spin observables

Future prospect on Λ p scattering

NN AND YN SCATTERING DATA

Rich data of pp, np scattering.
\rightarrow Fundamental information to construct realistic model of nuclear force.
Y. Fujiwara, Y. Suzuki, C. Nakamoto, Prog. Part. Nucl. Phys. 58 (2007) 439

For YN case, data quality and quantity are insufficiént.

DIFFICULTY OF YP SCATTERING (HYPERON BEAM)

Proton beam ($10^{12 \sim 13}$ particle / pulse)

Secondary beam (π, K) (107 particle / pulse)
G. Alexander, et al. Phys. Rev. 173 (1968) 1452

In past experiment, imaging method was used to identify Yp scattering

STRATEGY OF HYPERNUCLEAR PHYSICS

Nuclear physics
Known nuclear force

Unknown nuclear structure

Hypernuclear physics
Unknown YN interaction

Hyperon proton scattering
Lattice QCD

PRC 64044302 (2001)

Theoretical framework extended to $\mathrm{SU}_{\mathrm{F}}(3)$ symmetry

Expect from hypernuclear structure

EPJA33 (2007) 243 PTEP (2015) 081 D01
γ-ray spectroscopy

NEUTRON STAR AND YN INTERACTION

Two-body YN scattering is essential to understand the internal structure of neutron star.

- Interaction at short range
- Basic information to derive 3 body force from hypernuclear structure

Hypernuclear physics based on Realistic YN interaction

[^0]
YN INTERACTION IN S=-1 SECTOR

	${ }^{1} \mathrm{E}$ or ${ }^{3} \mathrm{O}$	${ }^{3} \mathrm{E}$ or ${ }^{1} \mathrm{O}$
$\mathrm{NN}(1=0)$	------	(27)
NN (l=1)	(10*)	-----
$\Lambda N(1=1 / 2)$	$1 / \sqrt{10[(8 s)}+3(27)]$	$1 / \sqrt{2}\left[-\left(8_{a}\right)+\left(10^{*}\right)\right]$
$\Sigma \mathrm{N}(1=1 / 2)$	$1 / \sqrt{10[3(8)}$) - (27)]	$1 / \sqrt{ } 2\left[\left(8{ }_{c}\right)+\left(10^{*}\right)\right]$
$\Sigma \mathrm{N}(1=3 / 2)$	(27)	(10)

Pauli effect in quark level

Large repulsive core is expected in quark based model (Lattice QCD)

$\Sigma^{+} p$ potential by Lattice QCD

YN INTERACTION IN S=-1 SECTOR

	${ }^{1} \mathrm{E}$ or ${ }^{3} \mathrm{O} \quad{ }^{3} \mathrm{E}$ or ${ }^{1} \mathrm{O}$
N ($\mathrm{l}=0)$	Forbiddden by isospin symmetry (27)
$\mathrm{NN}(1=1)$	(10*) \leftrightarrows
$\Lambda \mathrm{N}(\mathrm{l}=1 / 2)$	$1 / \sqrt{10[(8 s)}+3(27)] \quad 1 / \sqrt{ } 2\left[-\left(8_{a}\right)+\left(10^{*}\right)\right]$
$\Sigma \mathrm{N}(1=1 / 2)$	$1 / \sqrt{ } 10\left[3\left(8_{s}\right)-(27)\right] \quad 1 / \sqrt{2}\left[\left(8_{a}\right)+\left(10^{*}\right)\right]$
$\Sigma \mathrm{N}(1=3 / 2)$	(27) (10)

New type of LS force appears in YN sector
Anti-symmetric LS ${ }^{(-)}$force : $\mathrm{V}_{\text {ALS }} L \cdot\left(s_{1}-s_{2}\right)$

Spin singlet $\stackrel{\text { LS }}{ }(-)$ Spin triplet

- Quark based model
- Large ALS originated from coupling between (8s) and (8a) by one gluon exchange
- Boson exchange model
- No large ALS contribution

Difference theoretical prediction

- Polarization, Analyzing power
- Cross section

J-PARC E40:

Measurement of $d \sigma / d \Omega$ of Σp scatterings

Physics motivations

" Verification of repulsive force due to quark Pauli effect in the $\Sigma^{+} p$ channel

- Systematic study of the $\Sigma \mathrm{N}$ interaction by separating isospin channel

Large $\mathrm{d} \sigma / \mathrm{d} \Omega$ is predicted in $\Sigma^{+} \mathrm{p}$ channel
Measurement of $d \sigma / d \Omega$
Aim to detect 10,000 events

- $\Sigma^{+} p$ elastic scattering
- $\quad \Sigma^{-} p$ elastic scattering

H. Nemura et al.

Few-Body Syst (2013) 54:1223-1 226

- $\quad \Sigma^{-} p \rightarrow \Lambda n$ inelastic scattering

Collaborators

Tohoku Univ. : T. Aramaki, N. Chiga, N. Fujioka, M. Fujita, R. Honda, M. Ikeda, Y. Ishikawa, H. Kanauchi, S. Kajikawa, T. Kitaoka, T. Koike, K. Matsuda, Y. Matsumoto, K. Miwa, S. Ozawa, T. Rogers, T. Sakao, T. Shiozaki, H. Tamura, J. Yoshida H. Umetsu, S. Wada

JAEA : S. Hasegawa, S. Hayakawa, K. Hosomi, Y. Ichikawa, K. Imai, H. Sako, S. Sato, K. Tanida , T.O. Yamamoto, KEK : Y. Akazawa, M. leiri, S. Ishimoto, I. Nakamura, S. Suzuki, H. Takahashi, T. Takahashi, M. Tanaka, M. Ukai RIKEN : H. Ekawa

Chiba Univ. : H. Kawai, M. Tabata

Kyoto Univ. : S. Ashikaga, T. Gogami, T. Harada, M. Ichikawa,
T. Nanamura, M. Naruki, K. Suzuki

Osaka Univ. : K. Kobayashi, S. Hoshino, Y. Nakada, R. Nagatomi, M. Nakagawa, A. Sakaguchi

RCNP : H. Kanda, K. Shirotori, T.N. Takahashi
Okayama Univ. : K. Yoshimura
Korea Univ. : J.K. Ahn, S.H. Kim, W.S. Jung, S.W. Choi, B.M. Kang OMEGA Ecole Polytechnique-CNRS/IN2P3 : S. Callier, C.d.L. Taille,
L. Raux

Joint Institute for Nuclear Research : P. Evtoukhovitch,

E40 EXPERIMENTAL SETUP

DATA ANALYSIS

Σ beam identification

beam in LH_{2} target is tagged by the magnetic
CATCH

Σ beam identification

Σ beam in LH_{2} target is tagged by the magnetic spectrometers
CATCH

Recoil proton identification

Proton event in Σ^{-}production

Identification of np scattering from Σ^{-}decay

Identification of $\Sigma^{-} \mathrm{p} \rightarrow \Lambda \mathrm{n}$ conversion

Proton event in Σ^{-}production

Σ p scattering

Background (scattering with decay products)

Conversion process

Proton event in Σ^{-}production

Conversion process

Proton event in Σ^{-}production

$\Sigma \mathrm{p}$ scattering
Background (scattering with decay products)

Conversion process

np scattering is good tool to check our systematics to measure $\mathrm{d} \sigma / \mathrm{d} \Omega$

We derive $d \sigma / d \Omega$ for np scattering

$\Sigma^{+} \mathrm{p}$ analysis

$\Sigma^{+} p$ scattering

Σ^{+}p scattering event ~ 4500
$\Delta \mathrm{E}(\mathrm{\Sigma} \mathrm{P}$ scattering, 2proton event)

Analysis by T. Nanamura (Kyoto Univ.)
pp scattering from Σ^{+}decay
 $\Delta \mathbf{P}\left(\Sigma^{+} \rightarrow \mathbf{p} \pi^{0}\right.$ decay, pp scattering)

Summary of E40 scattering channel

pp scattering (CATCH detector calibration) with proton beam
" p momentum 0.5, 0.55, 0.6, 0.65, 0.75, $0.85 \mathrm{GeV} / \mathrm{c}$
np scattering from $\Sigma^{-} \rightarrow \mathrm{n} \pi^{-}$decay

- $0.3<p_{\mathrm{n}}(\mathrm{GeV} / \mathrm{c})<0.6$
$\Sigma^{-} p$ elastic scattering
- $0.45<\mathrm{p}_{\text {г- }}(\mathrm{GeV} / \mathrm{c})<0.8$
: ~4,500 events
$\Sigma^{-} p \rightarrow \Lambda n$ scattering
- $0.45<\mathrm{p}_{\text {E- }}(\mathrm{GeV} / \mathrm{c})<0.8$
: ~2,500 events
$\Sigma^{+} p$ elastic scattering
- $0.4<p_{\Sigma+}(\mathrm{GeV} / \mathrm{c})<0.8$
- $\sim 4,500$ events ($\Sigma^{+} \rightarrow p \pi^{0}$ decay mode)
- $\sim 3,500$ events ($\Sigma^{+} \rightarrow n \pi^{+}$decay mode)

Efficiency for recoil proton in pp scattering

pp scattering
@ 0.45, 0.5, 0.55, 0.6, 0.65, 0.75, 0.85 GeV/c

Identify pp scattering event from missing mass of $\mathrm{pp} \rightarrow \mathrm{pX}$ reaction

The other proton's angle and momentum can be predicted from missing momentum

Check whether measured angle and energy are consistent or not.

CATCH Efficiency study

1

Efficiency

Efficiency
CATCH efficiency was measured as a function of

- Vertex position
" Angle
- Proton energy

We made an efficiency table of CATCH based on the pp scattering data and Geant4 simulation.

pp differential cross section with proton beams

pp scattering data were used for

- CATCH detector calibration, efficiency study
- Consistency check for $\mathrm{d} \sigma / \mathrm{d} \Omega$ measurement

There are some inconsistencies at edge region of detector acceptance. But the obtained $d \sigma / d \Omega$'s are reasonable.

np scattering from Σ^{-}decay

Good practice to derive Σp scattering $d \sigma / d \Omega$

Beam does not pass though the whole size of target

- Σ^{-}decay
- Various production point and direction

We have to estimate total track length in the LH_{2} target from these information

- production vertex
- Σ^{-}or neutron momentum

$$
\frac{d \sigma}{d \Omega}=\frac{\sum_{i_{v t z}} \frac{N_{\text {scat }}\left(i_{v t z}, \cos \theta\right)}{\text { eff }\left(i_{v t z}, \cos \theta\right)}}{\text { density }}
$$

Neutron beam from Σ^{-}decay

np scattering

K^{+}

Neutron momentum is obtained from $\mathrm{P}_{\Sigma-}$ and $\mathrm{P}_{\pi-}$

Track length in LH2 target was obtained from decay position and neutron direction

np scattering identification from Σ^{-}decay

$\mathrm{d} \sigma / \mathrm{d} \Omega$ of np scattering

Differential cross section of np scattering

Σ p channels

Data are w/o acceptance correction

Analysis is on going to derive $d \sigma / d \Omega$ with acceptance and efficiency tables
Σ-p elastic scattering $(0.55<\mathrm{p}(\mathrm{GeV} / \mathrm{c})<0.65)$

$\Sigma+\mathrm{p}$ elastic scattering $(0.5<\mathrm{p}(\mathrm{GeV} / \mathrm{c})<0.6)$

Analysis of $\Sigma^{-} p \rightarrow \Lambda n$ channel

Based on the vertex position and momentum estimated from spectrometer analysis, Σ^{-}flight length was estimated from a Monte Carlo simulation.

Analysis of $\Sigma^{-} p \rightarrow \Lambda n$ channel (BG estimation)

The $\Sigma^{-} p \rightarrow \Lambda n$ channel is separated from other background events.
We are trying to understand the background contribution as much as possible.
We fit the four kinematical spectra simultaneously with sum of each contribution.

Analysis of $\Sigma^{-} p \rightarrow \Lambda n$ channel (BG estimation)

$\Delta p(\mathrm{GeV} / \mathrm{c})$

$\Delta p(\mathrm{GeV} / \mathrm{c})$

$\Delta p(\mathrm{GeV} / \mathrm{c})$

$\Delta p(\mathrm{GeV} / \mathrm{c})$

There are still discrepancy in background estimation. But uncertainty of the background contamination in the An peak is not large.

We can maybe release $d \sigma / d \Omega$ spectra soon for $\Sigma^{-} p \rightarrow \Lambda n$ channel.

$\Sigma^{-} P$ ELASTIC SCATTERING

In order to identify S-p scattering, much tighter cuts are necessary.

Scattering vertex

Decay order

vtz(decay)-vtz(scat)

$$
0.45<p(\mathrm{GeV} / \mathrm{c})<0.55,-0.1<\cos \theta<0.1
$$

Red shaded : Simulation
Open hist : data selected for $-20<\Delta \mathrm{E}_{\Sigma_{p}}<10$ region to enhance true $\Sigma^{-} p$ scattering event

In order to estimate the efficiency, the simulation program was updated based on the measured vertex resolution (spectrometer), angular resolution (CFT) and energy resolution (BGO).

Σ^{-P} ELASTIC SCATTERING

Subtraction of background reaction

In order to get better S / N ratio for identifying $\Sigma^{-} p$ elastic scattering event, these background events were rejected.

Σ^{-P} ELASTIC SCATTERING

$$
\Sigma^{-} p(0.55<p(\mathrm{GeV} / \mathrm{c})<0.65)
$$

POLARIZATION OF HYPERON

Σ^{+}polarization at production

- Hyperon can be produced with some polarization for the production plane
- Spin direction of hyperon can be identified from angular dependence of decay product

This method can be applied to $Y p$ scattering to derive polarization in Y_{p}^{4} scattering

Spin observables in E40

Progress of Theoretical Physics, Vol. 100, No. 5, November 1998
Scattering Observables of the $N N$ and $Y N$ Interactions in the $S U_{6}$ Quark Model

Tadashi Fujita, Yoshikazu Fujiwara, Choki Nakamoto*
and Yasuyuki Suzuki**

Polarization in $\Sigma^{+} p \rightarrow \Sigma^{+} p$
 - U/D asymmetry of proton from Σ^{+}decay

Polarization in $\Sigma^{-} p \rightarrow \Lambda n$

" U/D asymmetry of proton from Λ decay

Theoretical calculation of spin observable in Yp scattering is not updated.
We want to collaborate (or ask) theorist for calculation of spin observable in Yp scattering.
Λ p scattering with the $\pi^{-} p \rightarrow K^{0} \Lambda$ reaction

Possibility of Λ p scattering

Λ identification by $\pi^{-} p \rightarrow K^{0} \Lambda$ reaction is one of milestones

- Study of neutron-rich Λ hypernuclei
- Study of Λp scattering

New K ${ }^{0}$ identify method π^{+}: magnetic spectrometer π^{-}: CATCH

\square We can keep large acceptance for K^{0}

Possibility of Λ p scattering

Λ identification by $\pi^{-} p \rightarrow K^{0} \Lambda$ reaction is one of milestones

- Study of neutron-rich Λ hypernuclei
- Study of Λp scattering

New K ${ }^{0}$ identify method π^{+}: magnetic spectrometer π^{-}: CATCH

We can keep large acceptance for K^{0}
Missing mass ($\pi^{-} p \rightarrow K^{0} X$ reaction)

Accumulated Λ events $\sim 200 \mathrm{k} \rightarrow$ a several 10Λ p scattering might be collected

FUTURE PROJECT ：Λ P SCATTERING EXPERIMENT

Planning to perform at（new）K 1.1 beamline Λ production via $\pi^{-} p \rightarrow \mathrm{~K}^{0} \Lambda$ at $\mathrm{p}_{\pi-}=1.05 \mathrm{GeV} / \mathrm{c}$ －High polarization of Λ beam

R．D．Baker et al．，Nucl．Phys．B141（1978） 29

ヘのスピンが半成平面に対して十分偏極している

Conventional representation of elastic scattering

Scattering amplitude in $\frac{\vec{i}}{2}+\frac{\overrightarrow{1}}{2} \rightarrow \frac{\vec{i}}{2}+\frac{\overrightarrow{1}}{2}$ scattering : $\rightarrow 4 \times 4$ matrix
From S. Ishikawa et al.
PRC 69, 034001 (2004)
$\rightarrow 6$ components from the restriction of parity conservation and time-reversal invariance
spin-independent spin-spin symmetric LS $(\Delta S=0) \quad$ anti-symmetric $L S(\Delta S=1)$

T matrix

$$
\boldsymbol{M}=V_{\mathrm{c}}+V_{\sigma}\left(\boldsymbol{s}_{a} \cdot \boldsymbol{s}_{b}\right)+V_{\mathrm{SLS}}\left(\boldsymbol{s}_{a}+\boldsymbol{s}_{b}\right) \cdot \boldsymbol{L}+V_{\mathrm{ALS}}\left(\boldsymbol{s}_{a}-\boldsymbol{s}_{b}\right) \cdot \boldsymbol{L}+V_{\mathrm{T}}\left(\left[\boldsymbol{s}_{a} \otimes \boldsymbol{s}_{b}\right]^{(2)} \cdot \boldsymbol{Y}_{2}(\hat{\boldsymbol{r}})\right),
$$

Tensor

Scalar amplitude

Vector amplitude

Tensor amplitude

The tensor amplitudes $T_{j}(j=1,2,3)$ are calculated as

$$
\begin{gathered}
T_{j}=\frac{1}{2}\left\langle\boldsymbol{k}_{\mathrm{f}}\right| V_{\mathrm{T}} Y_{2, j-1}\left|\boldsymbol{k}_{\mathrm{i}}\right\rangle, \\
T_{\alpha}=\frac{1}{\sqrt{6}} T_{1}+T_{3},
\end{gathered}
$$

We want to derive these scattering amplitudes separately.

$$
T_{\beta}=\frac{1}{\sqrt{6}} T_{1}-T_{3,47}
$$

Scattering observables

From S. Ishikawa et al.
PRC 69, 034001 (2004)

Differential cross section $\quad \sigma(\theta)=\frac{1}{4} \operatorname{Tr}\left(\mathcal{M} \mathcal{M}^{\dagger}\right)=\left|U_{\alpha}\right|^{2}+\frac{3}{16}\left|U_{\beta}\right|^{2}+\frac{1}{2}\left(\left|S_{S L S}\right|^{2}+\left|S_{\mathrm{ALS}}\right|^{2}\right)+\frac{1}{4}\left|T_{1}\right|^{2}+\frac{1}{2}\left(\left|T_{2}\right|^{2}+\left|T_{3}\right|^{2}\right)$

Analyzing power (Polarization)

Depolarization

$$
A_{y}(a)=-\frac{4 \sqrt{2}}{N_{R}} \operatorname{Im}\left\{U_{\alpha}^{*}\left(S_{\alpha}+S_{\beta}\right)+\frac{1}{4} U_{\beta}^{*}\left(-S_{\alpha}+S_{\beta}\right) \quad-\frac{1}{2} T_{\alpha}^{*}\left(-S_{\alpha}+S_{\beta}\right)\right\}
$$

$$
D_{y}^{y}(a)=\frac{4}{N_{R}} \operatorname{Re}\left\{\frac{1}{2 \sqrt{3}}\left(U_{0}+\frac{1}{\sqrt{3}} U_{1}\right)^{*} U_{1}+\frac{1}{2}\left(U_{0}-\frac{1}{\sqrt{3}} U_{1}\right)^{*} \times\left(\frac{1}{\sqrt{6}} T_{1}+T_{3}\right)-S_{1}^{*} S_{2}+\frac{1}{2}\left|S_{3}\right|^{2}-\frac{1}{\sqrt{6}} T_{1}^{*}\left(\frac{1}{\sqrt{6}} T_{1}-T_{3}\right)-\frac{1}{2}\left|T_{2}\right|^{2}\right\}
$$

Analyzing power (Polarization)

Scattering with polarized Λ
Measure polarization of scattered Λ with unpolarized Λ

A lot of measurements of scattering observables enable us to investigate each matrix components

SUMMARY OF EXPERIMENTAL CONDITION

Beam time : ~ 1 month ($w / 20 \mathrm{M} /$ spill π^{-}beam intensity)

Λ beam

- Momentum range $0.4 \sim 0.8 \mathrm{GeV} / \mathrm{c}$
" Λ beam yield : $\sim 17 \mathrm{M}(\sim 0.55 \%$ of produced Λ can be tagged by SKS)
" ~100\% polarization

Λ p scattering

- Total cross section of 30 mb was assumed
- 10,000 Λ p scattering events can be identified

Tagged momentum distribution

Analyzing power (Λ)

UP/DOWN ASYMMETRY FOR DEPOLARIZATION MEASUREMENT

Polarization case $\left(P_{\text {beam }}=1, P=0, D_{y}^{y}=1\right)$

SUMMARY

Hyperon-proton scattering experiment has become possible.

- Study of two-body YN interaction from scattering experiment is very important to understand twobody interaction without uncertainty from many-body system.

$\Sigma \mathrm{p}$ scattering experiment at J-PARC

- $\Sigma \mathrm{N}$ interaction is a key to understand the origin of repulsive core in nuclear force.
- $\Sigma^{-} p, \Sigma^{-} p \rightarrow \Lambda n, \Sigma^{+} p$ channels are clearly identified with much better statistics.
" Derived $d \sigma / d \Omega$ of $p p$ and np scattering are consistent with partial wave analysis.
- Analysis is on going to derive differential cross section.
- Polarization in $\Sigma^{+} p$ scattering might be obtained.

Prospect on Λp scattering

- Λ production by $\pi^{-} p \rightarrow K^{0} \Lambda$ reaction was established.
- By using polarized Λ beam, we are planning a new experiment to measure $d \sigma / d \Omega$ and spin obserbables such as P_{Λ} and $D_{y y}$.

We want to keep close discussion with theorist to investigate YN interaction.

BACKUP

Lp scattering : Event category

1. All particles can be detected Kinematical check by both $\Delta E_{\text {recoil pr }}$ and Δp_{Λ}

2. two protons can be detected

Kinematical check by $\Delta E_{\text {recoil }}$ p,

π^{-}can be identified by MissingMass $\left(\Lambda_{\text {scat }} \rightarrow p X\right)$
Λp scattering event might be identified even in the bad S / N ratio in missing mass spectrum

Start the Λ p scattering analysis from case 1
3. 1 proton and 1π-can be obtained Kinematical check by Δp_{Λ} or $\Delta E_{\text {recoil pr }}$

Λp scattering identification

Future project : Λ p scattering experiment

Planning to perform at (new) K1.1 beamline Λ production via $\pi^{-} p \rightarrow \mathrm{~K}^{0} \Lambda$ at $\mathrm{p}_{\pi-}=1.05 \mathrm{GeV} / \mathrm{c}$
R.D. Baker et al. , Nucl. Phys. B141 (1978) 29

High polarization of Λ beam

Conventional representation of elastic scattering

Scattering amplitude in $\frac{\vec{i}}{2}+\frac{\overrightarrow{1}}{2} \rightarrow \frac{\vec{i}}{2}+\frac{\overrightarrow{1}}{2}$ scattering : $\rightarrow 4 \times 4$ matrix
From S. Ishikawa et al.
PRC 69, 034001 (2004)
$\rightarrow 6$ components from the restriction of parity conservation and time-reversal invariance
spin-independent spin-spin symmetric LS $(\Delta S=0) \quad$ anti-symmetric $L S(\Delta S=1)$

T matrix

$$
\boldsymbol{M}=V_{\mathrm{c}}+V_{\sigma}\left(\boldsymbol{s}_{a} \cdot \boldsymbol{s}_{b}\right)+V_{\mathrm{SLS}}\left(\boldsymbol{s}_{a}+\boldsymbol{s}_{b}\right) \cdot \boldsymbol{L}+V_{\mathrm{ALS}}\left(\boldsymbol{s}_{a}-\boldsymbol{s}_{b}\right) \cdot \boldsymbol{L}+V_{\mathrm{T}}\left(\left[\boldsymbol{s}_{a} \otimes \boldsymbol{s}_{b}\right]^{(2)} \cdot \boldsymbol{Y}_{2}(\hat{\boldsymbol{r}})\right),
$$

Tensor

Scalar amplitude

Vector amplitude

Tensor amplitude

The tensor amplitudes $T_{j}(j=1,2,3)$ are calculated as

$$
\begin{gathered}
T_{j}=\frac{1}{2}\left\langle\boldsymbol{k}_{\mathrm{f}}\right| V_{\mathrm{T}} Y_{2, j-1}\left|\boldsymbol{k}_{\mathrm{i}}\right\rangle, \\
T_{\alpha}=\frac{1}{\sqrt{6}} T_{1}+T_{3},
\end{gathered}
$$

We want to derive these scattering amplitudes separately.

$$
T_{\beta}=\frac{1}{\sqrt{6}} T_{1}-T_{3,56}
$$

Scattering observables

From S. Ishikawa et al.
PRC 69, 034001 (2004)

Differential cross section $\quad \sigma(\theta)=\frac{1}{4} \operatorname{Tr}\left(\mathcal{M} \mathcal{M}^{\dagger}\right)=\left|U_{\alpha}\right|^{2}+\frac{3}{16}\left|U_{\beta}\right|^{2}+\frac{1}{2}\left(\left|S_{S L S}\right|^{2}+\left|S_{\mathrm{ALS}}\right|^{2}\right)+\frac{1}{4}\left|T_{1}\right|^{2}+\frac{1}{2}\left(\left|T_{2}\right|^{2}+\left|T_{3}\right|^{2}\right)$

Analyzing power (Polarization)

Depolarization

$$
A_{y}(a)=-\frac{4 \sqrt{2}}{N_{R}} \operatorname{Im}\left\{U_{\alpha}^{*}\left(S_{\alpha}+S_{\beta}\right)+\frac{1}{4} U_{\beta}^{*}\left(-S_{\alpha}+S_{\beta}\right) \quad-\frac{1}{2} T_{\alpha}^{*}\left(-S_{\alpha}+S_{\beta}\right)\right\}
$$

$$
D_{y}^{y}(a)=\frac{4}{N_{R}} \operatorname{Re}\left\{\frac{1}{2 \sqrt{3}}\left(U_{0}+\frac{1}{\sqrt{3}} U_{1}\right)^{*} U_{1}+\frac{1}{2}\left(U_{0}-\frac{1}{\sqrt{3}} U_{1}\right)^{*} \times\left(\frac{1}{\sqrt{6}} T_{1}+T_{3}\right)-S_{1}^{*} S_{2}+\frac{1}{2}\left|S_{3}\right|^{2}-\frac{1}{\sqrt{6}} T_{1}^{*}\left(\frac{1}{\sqrt{6}} T_{1}-T_{3}\right)-\frac{1}{2}\left|T_{2}\right|^{2}\right\}
$$

Analyzing power (Polarization)

Scattering with polarized Λ
Measure polarization of scattered Λ with unpolarized Λ

A lot of measurements of scattering observables enable us to investigate each matrix components

Scattering observables

Differential cross section

$$
\begin{aligned}
& \sigma(\theta)=\frac{1}{4} \operatorname{Tr}\left(\mathcal{M} \mathcal{M}^{\dagger}\right)=\left|U_{\alpha}\right|^{2}+\frac{3}{16}\left|U_{\beta}\right|^{2}+\frac{1}{2}\left(\left|S_{\mathrm{SLS}}\right|^{2}+\left|S_{\mathrm{ALS}}\right|^{2}\right)+\frac{1}{4}\left|T_{1}\right|^{2}+\frac{1}{2}\left(\left|T_{2}\right|^{2}+\left|T_{3}\right|^{2}\right) \\
& A_{y}(a)=-\frac{4 \sqrt{2}}{N_{R}} \operatorname{Im}\left\{U_{\alpha}^{*}\left(S_{\alpha}+S_{\beta}\right)+\frac{1}{4} U_{\beta}^{*}\left(-S_{\alpha}+S_{\beta}\right) \quad-\frac{1}{2} T_{\alpha}^{*}\left(-S_{\alpha}+S_{\beta}\right)\right\}
\end{aligned}
$$

Analyzing power (Polarization)

Depolarization

$$
D_{y}^{y}(a)=\frac{4}{N_{R}} \operatorname{Re}\left\{\frac{1}{2 \sqrt{3}}\left(U_{0}+\frac{1}{\sqrt{3}} U_{1}\right)^{*} U_{1}+\frac{1}{2}\left(U_{0}-\frac{1}{\sqrt{3}} U_{1}\right)^{*} \times\left(\frac{1}{\sqrt{6}} T_{1}+T_{3}\right)-S_{1}^{*} S_{2}+\frac{1}{2}\left|S_{3}\right|^{2}-\frac{1}{\sqrt{6}} T_{1}^{*}\left(\frac{1}{\sqrt{6}} T_{1}-T_{3}\right)-\frac{1}{2}\left|T_{2}\right|^{2}\right\}
$$

T. Fujita et al., PTP 100 (1998) 931

J. Haidenbauer et al., Phys. Rev. C72, (2ర̊05), 044005

Summary of experimental condition

Beam time : ~ 1 month ($w / 20 \mathrm{M} /$ spill π^{-}beam intensity)
Λ beam

- Momentum range $0.4 \sim 0.8 \mathrm{GeV} / \mathrm{c}$
- Λ beam yield : $\sim 17 M(\sim 0.55 \%$ of produced Λ can be tagged by SKS)
- $\sim 100 \%$ polarization
Λ p scattering
- Total cross section of 30 mb was assumed
- 10,000 Λ p scattering events can be identified

Definition of quantization axis

$$
\begin{aligned}
& \mathbf{Y}=\mathbf{P}_{\pi-} \times \mathbf{P}_{\text {K0 }} \\
& \mathbf{X}=\mathbf{Y} \times \mathbf{P}_{\text {Abeam }} \\
& \mathbf{Z}=\mathbf{P}_{\text {Abeam }}
\end{aligned}
$$

Λ beam polarization

$$
\frac{1}{N_{0}} \frac{d N}{d \cos \theta_{p}}=\frac{1}{2}\left(1+\alpha P_{\text {beam }} \cos \theta_{p}\right)
$$

Definition of quantization axis

Beam Λ polarization

$$
P_{\text {beam }}=P(\phi=0) \times \cos \phi
$$

$$
\phi=0,180^{\circ} \text { Maximum polarization }
$$

$$
\phi=90,270^{\circ} \text { Unpolarized beam }
$$

Scattered Λ polarization

$$
\begin{gathered}
P_{\text {scat }}=\frac{2}{\alpha} \frac{N_{U}-N_{D}}{N_{U}+N_{D}} \\
\alpha=0.750 \pm 0.009 \pm 0.004
\end{gathered}
$$

(BESIII M. Ablikim et al. arXiv:1808.08917)

$$
\begin{gathered}
N_{U}: 0<\theta_{p}(d e g)<90 \\
N_{D}: 90<\theta_{p}(\text { deg })<180
\end{gathered}
$$

Up/Down asymmetry for depolarization

No beam polarization case

Spin polarization in the final state
$P_{\text {scat }}=\frac{2}{\alpha} \frac{N_{U}-N_{D}}{N_{U}+N_{D}}=\frac{P+D_{y}^{y} P_{\text {beam }}}{1+P P_{\text {beam }}}$
$\mathrm{P}_{\text {beam }}$: Polarization of beam

$$
P_{\text {beam }}=P(\phi=0) \times \cos \phi
$$

P : Induced polarization by the unpolarized beam
$D_{y}{ }^{y}$: Depolarization

Up/Down asymmetry for depolarization

Polarized case

Spin polarization in the final state
$P_{s c a t}=\frac{2}{\alpha} \frac{N_{U}-N_{D}}{N_{U}+N_{D}}=\frac{P+D_{y}^{y} P_{\text {beam }}}{1+P P_{\text {beam }}}$
$P_{\text {beam }}$: Polarization of beam

$$
P_{\text {beam }}=P(\phi=0) \times \cos \phi
$$

P : Induced polarization by the unpolarized beam
$D_{y}{ }^{y}$: Depolarization

Up/Down asymmetry for depolarization measurement

Polarization case $\left(P_{\text {beam }}=1, P=0, D_{y}^{y}=1\right)$

Up/Down asymmetry for depolarization measurement

SUMMARY

Hyperon-proton scattering experiment has become possible.

- Study of two-body YN interaction from scattering experiment is very important to understand twobody interaction without uncertainty from many-body system.

$\Sigma \mathrm{p}$ scattering experiment at J-PARC

- $\Sigma \mathrm{N}$ interaction is a key to understand the origin of repulsive core in nuclear force.
- $\Sigma^{-} p, \Sigma^{-} p \rightarrow \Lambda n, \Sigma^{+} p$ channels are clearly identified with much better statistics.
- Derived $d \sigma / d \Omega$ of $p p$ and $n p$ scattering are consistent with partial wave analysis.
- Analysis is on going to derive differential cross section.
- Polarization in $\Sigma^{+} p$ scattering might be obtained.

Prospect on Λp scattering

- Λ production by $\pi^{-} p \rightarrow K^{0} \Lambda$ reaction was established.
- By using polarized Λ beam, we are planning a new experiment to measure $d \sigma / d \Omega$ and spin obserbables such as P_{Λ} and $D_{y y}$.

We want to keep close discussion with theorist to investigate YN interaction.

YN INTERACTION IN S=-1 SECTOR

	${ }^{1} \mathrm{E}$ or ${ }^{3} \mathrm{O} \quad{ }^{3} \mathrm{E}$ or ${ }^{1} \mathrm{O}$
N ($\mathrm{l}=0)$	Forbiddden by isospin symmetry (27)
$\mathrm{NN}(1=1)$	(10*) \leftrightarrows
$\Lambda \mathrm{N}(\mathrm{l}=1 / 2)$	$1 / \sqrt{10[(8 s)}+3(27)] \quad 1 / \sqrt{ } 2\left[-\left(8_{a}\right)+\left(10^{*}\right)\right]$
$\Sigma \mathrm{N}(1=1 / 2)$	$1 / \sqrt{ } 10\left[3\left(8_{s}\right)-(27)\right] \quad 1 / \sqrt{2}\left[\left(8_{a}\right)+\left(10^{*}\right)\right]$
$\Sigma \mathrm{N}(1=3 / 2)$	(27) (10)

New type of LS force appears in YN sector
Anti-symmetric LS ${ }^{(-)}$force : $\mathrm{V}_{\text {ALS }} L \cdot\left(s_{1}-s_{2}\right)$

Spin singlet $\stackrel{\text { LS }}{ }(-)$ Spin triplet

- Quark based model
- Large ALS originated from coupling between (8s) and (8a) by one gluon exchange
- Boson exchange model
- No large ALS contribution

Difference theoretical prediction

- Polarization, Analyzing power
- Cross section

Baryon-Baryon Interaction

Investigation of $B B$ interaction

- Basic information to describe the system with Hyperon
- Hypernuclei
- High density matter inside neutron star
" Origin of short-range core
Short range interaction by
Quark Cluster model
- Pauli effect in quark level
- Color magnetic interaction

YN, YY interactions show rich aspect especially in short range region

Forbidden state

Σ hypernucleus and $\Sigma \mathrm{N}$ interaction

T. Nagae et al., Phys. Rev. Lett. 80 (1998) 1605

Σ hyperon in light and medium heavy nuclei

$$
\Sigma \text {-nucleus potential } \quad U_{0}^{\Sigma}+U_{\tau}^{\Sigma}\left(T_{R} t_{\Sigma}\right) / A_{\text {core }}
$$

spin-isospin averaged potential Lane's term : isospin dependent potential
Spin-isospin averaged potential can be studied from shape of quasi-free Σ^{-}production spectrum in medium heavy nuclei

P.K. Saho et al.;Phys.Rev.C70(2004)044613

T. Harada, R. Honda, Y. Hirabayashi,

Phys. Rev. C97 (2018) 024601

[^0]: Ultra high-resolution Λ hypernuclear spectroscopy

