Recent results on double-Lambda and Xi hypernuclei from the J-PARC E07 experiment.

Junya Yoshida

Graduate School Of Science, Tohoku University

High Energy Nuclear Physics Laboratory, Cluster for Pioneering Research, RIKEN

J-PARC E07 collaboration High Energy Nuclear Physics Lab at RIKEN

Double hypernuclei

information source of baryon-baryon interaction with u,d,s quarks

Baryon-baryon interaction

- Generalization of nuclear force
- Neutron star

pmn

Nuclear force

Single Λ hypernucleus

AN interaction

Nuclear Physics A 828 (2009) 191–232

- * ~80 Ξ stop events
- * Existence of double Lambda hypernucleus has been confirmed

KEK-PS E373 (1998-2000)

PHYSICAL REVIEW C 88, 014003 (2013)

* At least ~650 $\Xi^{\text{-}}$ stop events; Prog. Theor. Exp. Phys. 2019, 021D01 * NAGARA, KISO

J-PARC E07 (2016-17)

* ~10k Ξ⁻ stop events
* Systematic study of S=-2 system

Emulsion gel	K⁻ purity	Beam intensity
0.8 tons	25%	1*10 ⁴ /spill
₽	₽	↓
2.1 tons	~85%	3*10⁵/spill
	0.8 tons 2.1 tons	0.8 tons 25% 2.1 tons ~85%

10 µm

3. The weak decay point of the 2nd Λ

The setup of J-PARC E07 experiment @K1.8 beamline at J-PARC

Near the emulsion module

"Emulsion mover" for J-PARC E07

"Emulsion mover" for J-PARC E07

Beam exposure

2016 May-Jun. KURAMA Commissioning : 5.0 days Physics run : 4.9 days

2017 4/15 - 4/19 (44 kW) Emulsion exposure : 50 h calibration : 19 h

2017 5/25 - 6/29 (10 - 37.5 kW) Emulsion exposure : 23.4 days calibration : 8.5 h

Jul. 1st 2017, Run end photo @K1.8 counting room

Year	Beam power [kW]	K ⁻ intensity [/spill]	K ⁻ purity	Time [h/mod.]	Integrated K ⁻ [G/mod.]	DAQ Eff.	Emulsion modules
2016	42	260	81%	6.5	0.92	83%	18
2017	44	310	83%	5.6	1.0	84%	8
2017	37.5	280	82%	6.0	1.0	89%	78
2017	10 - 35	120 - 270	50% - 82%	6.5 – 9.0	0.52 – 1.0	89-92%	14

<u>118</u> emulsion modules * 13 emulsion sheets

Automated Track Following (Sample Movie) https://youtu.be/3fiWI5tDx2U

Detected 3-vertex events (33 events)

 $\overline{}$ 1. The capture point of Ξ^{-}

- 2. The weak decay point of the 1st Λ
- 3. The weak decay point of the 2nd Λ

Others: 6

- $3*10^3 \Xi^-$ stop events
- The number of detected events has nearly tripled in the past.

$\Lambda\Lambda$ candidates: 14

Twin Λ events: 13

$\Lambda\Lambda$ hypernuclei detection

MINO event

H. Ekawa et al., Prog. Theor. Exp. Phys. 2019, 021D02

$$^{16}O + \Xi^{-} \rightarrow (^{10}_{\Lambda\Lambda}Be, ^{11}_{\Lambda\Lambda}Be, ^{12}_{\Lambda\Lambda}Be) + ^{4}He + (t, d, p),$$

$$\hookrightarrow ^{5}_{\Lambda}He + (p, d, t) + p + xn,$$

$$\hookrightarrow ^{4}He + p + \pi^{-}.$$

$$M(^{9}Be) + M_{\Lambda} - B_{\Lambda}$$

$$M(^{9}Be) + 2M_{\Lambda} - B_{\Lambda\Lambda}$$

	Possible interpretations	B _{^^} [MeV]	Kinematic fitting χ^2 (DOF=3)
Most probable	Ξ^{-} + ¹⁶ O -> $_{\Lambda\Lambda}^{10}$ Be + ⁴ He + t	15.05 +- 0.11	11.5
· 🖒	Ξ^{-} + ¹⁶ O -> $_{\Lambda\Lambda}^{11}$ Be + ⁴ He + d	19.07 +- 0.11	7.3
	$\Xi^{-} + {}^{16}O - {}^{12}A^{12}Be^* + {}^{4}He + p$	13.68 +- 0.11 + E _{ex}	11.3

Where, $B_{\Xi^-} = 0.23$ MeV (3D state)

IBUKI event

S. H. Hayakawa, Ph.D. Thesis, Osaka Univ. (2019)

- The 1^{st} candidate of Ξ hypernucleus in E07.
- The $B_{\underline{z}}$ are measured precisely.

Possible interpretation	B _{Ξ-} [MeV]	Uncertainty of B ₌₋ [MeV]
Ξ^{-} + ¹⁴ N -> $\Xi^{15}C$ -> $\Lambda^{10}Be$ + $\Lambda^{5}He$	1.27	0.21

• Decay without neutron -> Kinematic fit

Event -Twin#010 (Irrawaddy event)

Precise track measurement using image processing

In XY-Z plane

Track	Range [µm]	θ [deg]	φ [deg]
#1	4.99 ±0.22	97.68 ±2.8	288.17 ±2.6
#2	12.31 ± 0.22	88.21 ± 1.0	68.91 ± 0.95
#3	10.12 ± 0.24	92.67 ±1.5	222.20 ±1.2
#4	2.9 ± 0.2	170 ± 4	214 ± 4
#5	189.7 ± 0.6	84 ± 1	69 ± 1
#6	2770.5 ± 1.3	116.7 ± 1.4	154.0 ± 0.4
#7	8404.2 ± 8.5	27.4 ± 0.8	229.3 ± 1.3

Identification of nuclides

Identification of nuclides

Example:2 Example:1 Ξ^{-} + ¹⁶O \rightarrow ⁹ _ABe + ⁵ _AHe + t Ξ^{-} + ¹⁴N \rightarrow ⁵ _AHe + ⁵ _AHe + ⁴He + n K.E. = 1.5 +- 0.1 MeV K.E. = 3.7 +- 0.2 MeV |p| = 119.6 +- 3.0 MeV/c |p| = 251.3 +- 6.2 MeV/c ⁵_AHe ⁹ _ABe K.E. = 1.06 +- 0.02 MeV K.E. = 2.8 +- 0.1 MeV |p| = 77.0 +- 0.9 MeV/c |p| = 146.3 +- 1.5 MeV/c ${}^{5}_{\Lambda}\text{He}$ ${}^{5}{}_{\Lambda}$ He K.E. = 3.5 +- 0.1 MeV K.E. = 3.5 +- 0.1 MeV |p| = 184.9 +- 1.5 MeV/c |p| = 184.9 +- 1.5 MeV/c $|p_{Missing}| = |p_{neutron}| = 42.1 + 5.3 \text{ MeV/c}$ |p_{invisible}| = 148.4 +- 9.8 MeV/c K.E. of neutron = 0.9 + -0.2 MeV Inbalancement of momentum: Q-value > 0: Rejected Accepted

Identification of Nucleus

(Rounded to two significant figures.)

E373 Kinka event

X-Y view

Uniquely identified via a new charge identification method

An experiment at RIKEN : NP1406-RRC32

S. Kinbara, et al., PTEP 2019, 011H01 https://doi.org/10.1093/ptep/pty137.

3D measurement as X-Z plane

Toμm

Possible B_{Ξ}

 $\Xi^{-} + {}^{14}N \rightarrow {}^{9}_{\Lambda}Be + {}^{5}_{\Lambda}He + n$ $B_{\Xi^{-}} = 800^{-10} = 1.1^{10} \text{MeV}$

$$\begin{bmatrix} \Xi^{-} + {}^{14}N \rightarrow {}^{9}{}_{\Lambda}Be^{*} + {}^{5}{}_{\Lambda}He + n \\ B_{\Xi^{-}} = 5 \text{ for a minimum NeV} \\ \end{bmatrix}$$

$B_{\Xi_{-}}$ Uncertainty

Spatial resolution of AgBr crystal in emulsion \sim = 0.2 μ m.

Level scheme of $\Xi^{-14}N$ system

List of twin Λ hypernuclear events

		Ξ^- captured by			daughter hypernucle			ei			
		¹² C	¹⁴ N	¹⁶ 0	Н	Не	Li	Ве	В	С	n
	E176 #10-9-6 (2 <i>p</i> ?)				⁴ H			⁹ Be			
ate	E176 #13-11-14 (2 <i>p</i> ?)				⁴ H			⁹ Be			
sta	T008, atomic				t	2⁵He					
ji C	T009, atomic					⁵He	⁸ Li				
С С	T004, atomic					⁵He			¹² B		
Ato	E373 - 1		\bullet			2⁵He,α					1
	E176 #14-03-35(2 <i>p</i> ?)		\bigcirc	\bigcirc							
	T002 (2 <i>p</i> ?)					⁵He		⁹ Be			1
	T013 (2 <i>p</i> ?)	0	0		(<i>t</i>)	2 ⁵ He, (α)					(1)
e:	E373 : KISO					⁵He		¹⁰ Be			
ncl	T006 : IBUKI					⁵He		¹⁰ Pe			
Ē	Т003	?		?		⁵ He	SI	^۲ B ک			1
be	E373 : KINKA			im	na	Не		⁹ Be			1
hγ	Т007					⁵He		⁹ Be			1
[1]	T010 : IRRAWADDY	•				2 ⁵ He, α					1
	T011 (under analysis)					2 ⁵ He, α					1
			Excess	?		alpha cl	luste	r struc	ture?		

•: Uniquely identified

 \bigcirc : Multiple interpretations

X-ray measurement from Ξ^- atom with Hybrid method combined Ge detector and emulsion

Short summary

- Number of Ξ⁻ stop events is approximately 4*10³ KEK-PS E176: ~80 KEK-PS E373: At least ~650 J-PARC E07: 3*10³
- The number of detected double strangeness events has nearly tripled in the past.
- Analyses of twin A hypernuclear events
 Irrawaddy event
 Kinka event
 They suggest existence of a very deep bound state of Ξ⁻-¹⁴N system.
- Several events are identified as ($\Xi^{-} + {}^{14}N \rightarrow {}_{\Xi}{}^{15}C \rightarrow {}_{\Lambda}Be + {}_{\Lambda}He$)
- X-ray measurement from Ξ^- atom is ongoing

Untriggerable reactions

Trigger efficiency is approximately 0.3

Double cross section to (K^-, K^+)

Expected event number: ~1 / sheet. Totally 10^3 events in emulsion sheet of J-PARC E07

Scanning

Vertex detection using image processing

Image and line information

Under x20 objective

100µm

Under x20 objective

100µm

100µm

Roadmap

Detection of Double hypernuclear events using machine learning

* Enough training data are necessary but double hypernucler events are rare.

Training using double hypernuclear events generated by simulation

* Statistical performance evaluation is not possible.

Training and validation using alpha decay events generated by simulation

alpha decay events

~10 events / 1cm*1cm*0.5mm

* As a first step,

Training and validation using real alpha decay

* Implementing machine learning* Comparison with existing method

J. Yoshida, et al., arXiv:2009.05770 [nucl-ex] In the revision process with N.I.M.-A

Conventional method using geometrical feature

Process:

- Line segment detection
- Connecting the lines in a picture
- Connecting the lines across layers

Output files of Vertex Picker:

- Cropped micrographs for each vertex-cand.
- Information of line segments

Conventional method using line detection

For Comparison

	# of candidates	Precision	Recall
Conventional (line information)	2489	0.081 +- 0.006	0.788 +- 0.056
Machine learning	???	???	???

Model (Convolutional Neural Network: CNN) and training

Binary classifier

Loss: The value to minimize during the training (cross entropy)

Epoch: Iteration number of optimization

Best: at the epoch providing the minimum validation loss

The performance is depend on random number → Averaged performance of four trials

Datasets

Challenges:

How to conduct training with small imbalanced dataset?

Techniques to conduct training with a small imbalanced dataset

- Using a pre-trained model with large scale image dataset
- Oversampling
- Data Augmentation

An Important technique

Data Augmentation by RandAugment

https://arxiv.org/abs/1909.13719

- N (1 ~ 8), how many image transformations are executed randomly in defined 8 ones.
- M (0 ~ 30), the magnitude of image transformation
- Only 2 parameters

 \rightarrow We conduct a (N, M) search

Result

Performance with dataset for comparison

	6.8 +- 0.6 times large	er	1 / 6.8 +- 0.6
	+		•
Machine learning 4 trials	0.547 +- 0.025	0.788	366 +- 18
Conventional (line information)	0.081 +- 0.006	0.788 +- 0.056	2489
	Precision (Purity)	Recall (Efficiency)	# of Candidates

A foundation for the further development to discover a number of double hypernuclei

Scanning stage for Overall scanning

In 2020 Dec.,

1 scanning system for test operation.

In 2021 Mar.,

3 scanning systems will be in operation.

- Development of piezo actuator at Gifu-U
- Scanning at HENP, RIKEN
- Online process

	New scanning system (2020)			
Objective lense	x20			
N pictures	80 (Focal depth: 6 μι	m)		
Area of Field of view $[\mu m^2]$	530*530			
Frame rate [fps]	160	$\int \rightarrow 4 \text{Mpix CMOS sensor}$		
Dead time ratio	0.2 \rightarrow by a piezo act	tuator		
scanning speed/day	540 cm ²			
To scan the all E07 sheets	15 years \rightarrow 3 years using 5 stages			

Summary

- Overall scanning method
- Image recognition for vertex detection

Basic development using CNN (image classification) is established Precision is 0.547 +- 0.025 when recall is 0.788 Eye-check load: 1 / (6.8 +- 0.6)

- Upgrade of scanning stage
- We aim to detect 10³ events of double hypernuclei within a few years.

$\mbox{Emulsion} \times \mbox{Machine learning collaboration}$

J. Yoshida, H. Ekawa, A. Kasagi, E. Liu, A. Muneem, W. Dou M. Nakagawa, K. Nakazawa, N. Saito, T. R. Saito, M. Taki, Y. Tanaka, M. Yoshimoto

