

THEIA-Strong, REIMEI seminar (zoom)

Short overview on planned hypernucleus activities at JLab

SATOSHI N. NAKAMURA TOHOKU UNIVERSITY

JSPS KAKENHI Grants No. 18H05459, 17H01121 Toward new frontiers : Encounter and synergy of state-of-the-art astronomical detectors and exotic quantum beams

CURRENT PROBLEMS ON Λ HYPERNUCLEI

CURRENT PROBLEMS ON Λ HYPERNUCLEI

NNA STATE EXISTS?

C. Rappold et al. (HypHI Collaboration), Phys. Rev. C 88, 041001(R) (2013). Talk by C.R. at <u>EMMI2</u>

Bound ³_A*n cannot be reproduced:* E. Hiyama et al., Phys. Rev. C 89, 061302(R) (2014) A. Gal et al., Phys. Lett. B 736, 93–97 (2014) *Resonance nnA may exist:* I.R.Afnan et al., PRC 92, 054608 (2015) H. Kamada et al., EPJ Web Conf. 113, 07004 (2016) I.Filikhin et al., EPJ Web Conf. 113, 08006 (2016).

Detectable both bound and resonance states

E12-17-003 : Exp. Performed in 2018

 $^{3}T(e, e'K^{+})nn\Lambda$

HYPERON PUZZLE

Based on our knowledge on Baryonic Force:

Hyperon naturally appear at high density ($\rho=2^{2}3\rho_{0}$)

AFDMC by Lonardoni et al. PRL114 (2015) 092301, updated (2016) ESC08c + 3B/4B RF : G-Matrix Calc. by Yamamoto et al., PRC 90 (2014) 045805.

Variational Meth. + AV18+UIX by Togashi et al., PRC 93 (2016) 035808

From Hypernuclei to Neutron Stars

PHENOMENOLOGICAL 3 BRF+AFDMC

C_T :Parameter to gauge Ann contribution in ANN potential

 40 Ca(e ,e'K⁺) $^{40}_{\Lambda}$ K and , 48 Ca(e, e'K⁺) $^{48}_{\Lambda}$ K

E12-15-008 accepted with GRADE A.

Other calculations are important to analyze new data.

New Pair Charge Sep. Mag. ^{40,48}Ca targets

> prepared and already in hand.

TO BE DONE BEFORE E12-15-008 BEAMTIME

Item	Status	Schedule
Pair of Charge Sep. Magnets	Completed	Ready for ship
Vacuum Chamber	For Solid targets	Und. Design
	For Cryo. targets	Concep. Design
Targets	^{40,48} Ca	Ready in hand
HKS Water Cerenkov	Prototype ready	Mass Production
Stand for HKS		Und. Design
Sieve slits, collimators		
Analysis/Simulation codes	Under develop.	In 2020~21

Ready for Beam in 2021

TO BE DONE BEFORE E12-15-008 BEAMTIME

Ready for Beam in 2021

SUMMARY

Hypertriton Puzzle

C12-19-002 : Updated Proposal, Talk by Toshi Other exp. at ELPH, J-PARC, Mainz

 $^{3}_{\Lambda}n$ Puzzle

E12-17-003 : Data taken, Analysis in progress C12-20-003 : Additional Beam for more statistics GSI new experiment

CSB of Λ Hypernuclei

E12-15-008 : New Magnets Completed Preparing for Exp. Readiness Review Ready for beam in 2021

Hyperon Puzzle

E12-18-004 : Franco will talk.