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Heavy-lon Collisions



Heavy-lon Colliders: The Bevalac (1971-1993)




Heavy-lon Colliders: Relativistic Heavy-lon Collider
(RHIC) (2000-)
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Heavy-lon Colliders: Relativistic Heavy-lon Collider




Heavy-lon Colliders: Large Hadron Collider (LHC)
(2009-777?)




Heavy-lon Colliders: Large Hadron Collider (LHC)




Heavy-lon Colliders: LHC “incident” (2008)




Heavy-lons

Definition: lons heavier than carbon




Heavy-lons in CH: Lead (LHC)




Heavy-lons in the USA: Gold (RHIC)




Matter in extreme conditions: A flame

Bunsen Burner: T ~ 1700°C



Matter in extreme conditions: Sun’s Core

2005/01/19 19:19

Sun’s Core: T ~ 107 K



Matter in extreme conditions: Fusion on Earth

Nuclear fusion at ITER: T ~ 108 K



Matter in extreme conditions: Supernova

Supernova: T ~ 10" K



Matter in extreme conditions: Heavy-ion collisions

Heavy-lon Collisions RHIC : T ~ 1072 K
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Physics of Heavy-lon
Collisions



» Heavy-lons — Nuclear Physics
» Nuclear Physics — Strong Interactions

» Theory of Strong Interactions—
Quantum Chromo Dynamics (QCD)



Asymptotic Freedom in QCD

Strength of the Interaction: ag
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Nobel prize 2004: Gross, Politzer, Wilczek



The QCD Phase Transition
Simulating QCD in Equilibrium:
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Heavy-lon Colliders: Relativistic Heavy-lon Collider




Numbers

» QCD Phase Transition: T ~ 200 MeV —
€~ 12 x (0.2 GeV)* ~ 2GeV /fm®

» RHIC:

2AmN 2A\/§

3
€~ 6 fm)sfy ~ (6 fm)? ~ 200GeV /fm

» But not all of egyyc is thermalized!!!



Au+Au Collisions at RHIC

A Gold-on-Geld Collision at RHIC
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Au+Au Collisions at RHIC




Experimental Observables




Experimental Observables

dN/dp/de




Experimental Observables

» For ultrarelativistic heavy-ion collisions,

dN ( dN
dpid¢dy  “dpideody

dN
dp dy >¢

» Elliptic flow: vo(p.)

» Radial flow: (

) (14 2va(pL)cos(2¢) + ...



Experimental Data
Hadron Spectra at RHIC /s = 200 GeV
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Experimental Data

Elliptic Flow at RHI

C /5 = 130 GeV
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What kind of physics dominates at RHIC?

Is it Kinetic Theory?
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Experimental Data

Elliptic Flow at RHI

C /5 = 130 GeV
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What kind of physics dominates at RHIC?
Is it Kinetic Theory? NO !
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What kind of physics dominates at RHIC?

Is it Fluid Dynamics? YES!
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Why Fluid Dynamics?

The Quark-Gluon Plasma:
» Temperature ~ 4 x 102 °C
» Lifetime ~ 10~23sec
» Size ~ 10~ "m



Why Fluid Dynamics?

The Quark-Gluon Plasma:
» Temperature ~ 4 x 102 °C
» Lifetime ~ 10~23sec
» Size ~107"m
Why can we describe the QGP with fluid dynamics?



Viscous Fluid Dynamics



Fluid Dynamics

Conservation of Energy+Momentum for long
wavelength modes’

long wavelength modes =
looking at the system for a very long time from very far away



Th = eu'u” — p(g" — utu”)  (Fluid EMT, no gradients)

+

au T =0 (“EMT Conservation”)

|deal Fluid Dynamics



Non-relativistic ldeal Fluid Dynamics

. . 1 y
oV + VMoV = ——0,0"p
P
[L. Euler, 1755]
» Non-linear
» Non-dissipative: “Ideal Fluid Dynamics”



Relativistic ldeal Fluid Dynamics

T = T/ (Fluid EMT, no gradients)

+

0, T" =0 (‘EMT Conservation”)

|deal Fluid Dynamics



Relativistic Viscous Fluid Dynamics

TH = TH” 4+ 1" (Fluid EMT, 1% o. gradients)

+

0, T" =0 (‘EMT Conservation”)

Relativistic Navier-Stokes Equation



Relativistic Viscous Fluid Dynamics

» L. Euler, 1755:
O + VIOV = — Lo
P
» C. Navier, 1822; G. Stokes 1845:

OV + VOV = —18j [6"p+N7] |

» ovi  ovi 2 0v jov!
r_ _ - _ Z _
=" (8xf ox 30 ax') Ve

» 7, (...transport coefficients (“viscosities”)



Fluid Dynamics

Effective Theory of Small Gradients



Relativistic Navier-Stokes Equation

» Good enough for non-relativistic systems
» NOT good enough for relativistic systems



Navier-Stokes: Problems with Causality

Consider small perturbations around equilibrium
» Transverse velocity perturbations obey

aouy — L _925u¥ =0
e+p

» Diffusion speed of wavemode k:

vT(k):ZKEZp—>oo(k>>1)

» Know how to regulate: “second-order” theories:

02U + OpuY — %aﬁauy =0

[Maxwell (1867), Cattaneo (1948)]



Second Order Fluid Dynamics

» Limiting speed is finite

. 4n ¢
lim v (k) =/c2 +
k—o0 (k) \/ s+ 3r:(e+p) mm(e+p)
[Romatschke, 2009]

> Tp, 1. .. .... “2" order” regulators for “1t order” fluid
dynamics

» Regulators acts in UV, low momentum (fluid dynamics)
regime is still Navier-Stokes



Second Order Fluid Dynamics

T — Tiﬁ” + T1*  (Fluid EMT, 27 o. gradients)

+

0, T" =0 (“EMT Conservation”)

“Causal’ Relativistic Viscous Fluid Dynamics



Second Order Fluid Dynamics

T — Tiﬁ” + T1*  (Fluid EMT, 27 o. gradients)

+

0, T" =0 (“EMT Conservation”)

“Causal’ Relativistic Viscous Fluid Dynamics

First complete 2"¢ theory only in 2007 !

[Baier, Romatschke, Son, Starinets 2007]



First Relativistic Viscous Fluid Dynamics Simulation
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Lessons Learned

» Fluid dynamics is effective theory of long wavelength
modes
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Lessons Learned

» Fluid dynamics is effective theory of long wavelength
modes

» Fluid dynamic equations are universal— apply at many
different scales

» Coefficients (speed of sound, viscosity) depend on specific
system

» Effect theory breaks down if gradient expansion fails



Quark Gluon Plasma: Fluid Dynamics versus data
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Quark Gluon Plasma: Fluid Dynamics versus data

v, (percent)
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Constraints on n/s: Implications

» Findn/s < 0.5 at RHIC
» Weak coupling QCD calculations:

n 1

=~ ———— —~ 1 for RHIC
s g*hg!

[Hosoya and Kajantie, 1985]

» Strong coupling calculations via gauge/gravity duality (not
QCD!)
no
gy 0.08

[Policastro, Son, Starinets 2001]



Theory Achievements
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Theory Achievements (based on RHIC data)

» The bulk of the matter produced in heavy-ion collisions
behaves fluid-like

» The Quark Gluon Plasma is less viscous than superfluid
helium (/s ~ 1)!

» Value of /s suggests the QGP is non-perturbative

» Gauge/gravity duality prediction for /s is close to
experiment



Challenges

v

Presently, initial equilibration of system is assumed

Equilibration in heavy-ion collisions is hard problem:
non-perturbative, real-time (no lattice QCD calculations)

So far not even a credible model exists!
Maybe gauge/gravity duality can help?

v

v

v



Conclusions

» Heavy-lon Collisions probe Matter under extreme
conditions

» Available experimental data is well described by fluid
dynamics, while most other approaches fail

» Heavy-lon Collision Data together with Fluid Dynamics
constrain properties of nuclear matter at T ~ 200 MeV



Bonus Material



Non-linear & Non-dissipative: Turbulence




Non-linear & Dissipative: Laminar




Non-linear & Dissipative: Laminar

Viscosity dampens turbulent instability!



