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Motivation

Matter under Extreme Conditions ⇔ Strongly Coupled Matter

New theoretical approaches welcome to complement existing ones

In particular for dynamical processes, at finite density, . . .

⇒ Gauge/Gravity Duality

maps strongly coupled gauge theories to weakly coupled gravity theories

originates from string theory
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Gauge/gravity duality: Generalizations of AdS/CFT correspondence

AdS: Anti-de Sitter space, CFT: Conformal field theory

Gauge/Gravity Duality is a powerful tool for

– uncovering universal behaviour

– creating new links between strongly correlated quantum liquids
quark-gluon plasma
ultracold atoms
neutron matter

– studying phase transitions (thermal and quantum)

Top-down approach: Solve equations of motion in 10d gravity
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Outline

1. Basics of Gauge/Gravity Duality

2. An Example for Applications:

Superconductivity/Superfluidity at finite isospin density
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1. Basics of Gauge/Gravity Duality
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AdS/CFT correspondence (Maldacena 1997)

  

SU(N) gauge theory
(Quantum)

String Theory
Gravity (Quantum)

Saddle point
approximation

Large N gauge theory Classical Gravity

Duality

Duality
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String theory origin of AdS/CFT correspondence

near-horizon geometry
AdS  x  S5

5

D3 branes in 10d

duality

⇓ Low-energy limit

N = 4 SU(N) theory in four
dimensions (N →∞) Supergravity on AdS5 × S5
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AdS/CFT correspondence (Maldacena 1997)

AdS: Anti-de Sitter space in d = 5 ⇔ CFT: conformal field theory in d = 4

Symmetry properties coincide

‘Dictionary’ Gauge invariant operators in field theory⇔ Fields in gravity theory
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Generalizations of the AdS/CFT Correspondence

1. Symmetry requirements are relaxed in a controlled way

⇒ RG flows

⇒ Theories with confinement similar to QCD

⇒ Finite temperature and finite density

2. More degrees of freedom are added (Example: quarks)

3. Non-relativistic theories
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Quarks (fundamental fields) within the AdS/CFT correspondence

Adding D7 brane probe: Babington, J.E., Evans, Guralnik, Kirsch PRD 2004

0 1 2 3 4 5 6 7 8 9
D3 X X X X
D7 X X X X X X X X

π pseudoscalar meson mass: From fluctuations of hypersurface

ρ vector meson mass: From fluctuations of gauge field on hypersurface
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Comparison to lattice gauge theory

Mass of ρ meson as function of π meson mass2 (for N →∞)
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J.E., Evans, Kirsch, Threlfall ’07, review EPJA Lattice: Lucini, Del Debbio, Patella, Pica ’07

AdS/CFT result:
mρ(mπ)
mρ(0)

= 1 + 0.307
(

mπ

mρ(0)

)2

Lattice result (from Bali, Bursa ’08): slope 0.341± 0.023
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Part II:

Application Example

Superconductivity/Superfluidity
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Superconductivity/Superfluidity

Superfluidity in quark-gluon plasma:

Instability at finite isospin density

ρ meson condensate, flavour degrees of freedom can move without friction

Moreover:

Global U(1) toy model for electromagnetism

Fermionic excitations in superfluid

Excitations near zeroes of the energy gap (order parameter)
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Gauge/Gravity Duality at Finite Temperature

N = 4 Super Yang-Mills theory at finite temperature is dual to AdS black hole

Witten 1998

Toy model for quark-gluon plasma
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Quarks in Gauge/Gravity Duality at Finite Temperature

D7 brane embedding in black hole background

Minkowski phase Black hole phase

First order phase transition Babington, J.E., Evans, Guralnik, Kirsch
Mateos, Myers, Thomson
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Standard procedure in D3/D7: Mateos, Myers et al 2003

Meson masses calculated from linearized fluctuations of D7 embedding
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Masses and decay widths of mesons

Standard procedure in D3/D7: Mateos, Myers et al 2003

Meson masses calculated from linearized fluctuations of D7 embedding

Fluctuations: δw(x, ρ) = f(ρ)ei(~k·~x−ωt), M2 = −k2

For black hole embeddings, ω develops negative imaginary part

⇒ damping ⇒ decay width

Quasinormal modes of D7 brane fluctuations determine meson mass and width

Landsteiner, Hoyos, Montero 2006

Excitations in strongly coupled system
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Quasinormal Modes and Spectral Functions
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Finite U(1) baryon density



Finite U(1) baryon density

Mateos, Myers, Matsuura et al
Baryon density nB and U(1) chemical potential µ
from non-trivial profile for gauge field time component:

Ā0(ρ) ∼ µ+
d̃

ρ2
, d̃ =

25/2

Nf

√
λT 3

nB

At finite baryon density, all embeddings are black hole embeddings

18



Phase diagram with finite U(1) baryon density

Phase diagram:

grey region: nB = 0
white region: nB 6= 0
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Isospin chemical potential and density

Embed two coincident D7-branes into AdS-Schwarzschild
gauge fields Aµ = Aa

µ σ
a ∈ u(2) = u(1)B ⊕ su(2)I

Finite isospin density: A3
0 6= 0 ⇒ Explicit breaking to u(1)3



Isospin chemical potential and density

Embed two coincident D7-branes into AdS-Schwarzschild
gauge fields Aµ = Aa

µ σ
a ∈ u(2) = u(1)B ⊕ su(2)I

Finite isospin density: A3
0 6= 0 ⇒ Explicit breaking to u(1)3

Field theory described:

N = 4 Super Yang-Mills plus two flavors of fundamental matter

at finite temperature and finite isospin density
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ρ meson condensation

J.E., Kaminski, Kerner, Rust 0807.2663

Above a critical isospin density, a new phase forms



ρ meson condensation

J.E., Kaminski, Kerner, Rust 0807.2663

Above a critical isospin density, a new phase forms

New phase is unstable
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Quasinormal modes

Instability:

Im ω

Rew

Imw

Re ω
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A new ground state forms

There is a new solution to the equations of motion

with non-zero vev for A1
3σ

1 in addition to the non-zero A3
0σ
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A new ground state forms

There is a new solution to the equations of motion

with non-zero vev for A1
3σ

1 in addition to the non-zero A3
0σ

3

A3
0 = µ− d̃3

0

2πα′
ρH

ρ2
+ . . . , A1

3 = − d̃3
1

2πα′
ρH

ρ2
+ . . .

Pole structure:PSfrag repla
ements n = 0n = 1 n = 0 n = 1
n = 0

RewImw
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Superconductivity

Ammon, J.E., Kaminski, Kerner 0810.2316, 0903.1864

The new ground state has properties known from superconductors:

infinite DC conductivity, gap in the AC conductivity

second order phase transition, critical exponent of 1/2 (mean field)

a remnant of the Meissner–Ochsenfeld effect
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Superfluidity and Superconductivity

Order parameter d̃1
3 ∝ 〈ψ̄uγ3ψd + ψ̄dγ3ψu + bosons 〉 6= 0

ρ meson condensate (p-wave symmetry)

Spontaneous breaking of (global) U(1)3

ρ meson condensate at finite isospin density

discussed in QCD literature Son, Stephanov; Splittorff; Sannino ...

Flavour superfluid

Within QCD: Superconductivity in presence of magnetic field Chernodub 2010
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Thermodynamics

Flavour contribution to Grand potential vs. temperature
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Conductivity

Frequency-dependent conductivity σ(ω) = i
ωG

R(ω)

GR retarded Green function for fluctuation a3
2

2 4 6 8 10
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100

Re σ

w w = ω/(2πT )

T/Tc: Black: ∞, Red: 1, Orange: 0.5, Brown: 0.28.

(Vanishing quark mass)

Interpretation: Frictionless motion of mesons through plasma
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Meissner effect
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Quantum phase transition

Turn on both isospin and baryon chemical potential
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Figure by Patrick Kerner

Example for Quantum Phase Transition
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Quantum Phase Transition

Movement of quasinormal modes
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Quantum phase transition

Phase diagrams

Quantum Phase Transition Superconductor
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Fermionic excitations in holographic p-wave superfluids

Ammon, J.E., Kaminski, O’Bannon 1003.1134
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Fermionic excitations in holographic d-wave superfluids

Benini, Herzog, Yarom 2010
Fermi arcs

T = 0.59Tc T = 0.49Tc

Density plot of Fermion spectral function
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Summary

An example of gauge/gravity duality applied to

phase transitions in strongly coupled theories

at finite temperature and density

Meson melting

At finite isospin density: ρ meson condensation

Superfluidity: Frictionless motion of mesons

Fermionic excitations

Quantum phase transitions
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(Selection of) Current activities and new results in gauge/gravity duality

1. Time-dependent processes, thermalization Romatschke; Chesler+Yaffe, . . .

2. Axial anomaly and hydrodynamics at finite baryon density
J.E., Haack, Kaminski, Yarom; Loganayagam et al

Chiral phase separation in rotating relativistic fluids Son, Surowka

Chiral magnetic effect in gauge/gravity duality

Landsteiner, Rebhan et al, Yee et al

3. Gauge/gravity duality at finite baryon density (⇒ FAIR at GSI)

4. Fermions Schalm, Zaanen et al; Liu, McGreevy et al

5. Quantum phase transitions Horowitz et al, ...
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