

 π^{0} / η conversion analysis in CBM status and next steps...

Two new PHD students in Wuppertal

levgenii Kres

finished PHD in Jan. 2019 left BuW in Feb 2020

worked on π^0 / η via double conversion in CBM

last year: HADES Ag+Ag data

Tetiana Povar from Ukraine starting - today

main focus: **HADES** continue π^0 / η conversion analysis in HADES \rightarrow include simulation

Pavish Subramani from India starting ~Oct. 2020

main focus: **CBM** continue work on photon conversion analysis

Short recapitulation: status photon conversion analysis I. Kress

• (own) UrQMD simulations Au+Au @ 8 AGeV no PLUTO cocktail added

• detector setup ~ 2017: STS v16g, MVD v17a_tr, RICH V17a_1e

field map v12b

250 µm gold target

70% magnetic field (0.7 Tm)

- most of his work based on 15x10⁶ simulated events (central)
- using standard RICH reconstruction for lepton ID

gamma reconstruction via conversion

• Y-reconstruction from

- pair of secondary
$$e^+ / e^-$$
 tracks $(\chi^2_{\text{trackfit}} > 5)$

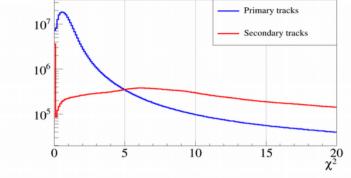


Figure 5.3: Distributions of normalized χ^2 from the standard fitter, fitting all tracks to the primary vertex.

secondary vertex reconstruction using KFparticle (as module, not "black box")

 $(\chi^2_{\text{trackfit}} < 5)$

- Lepton identification using RICH, 3 different cases:
 - 1) all 4 leptons within RICH acceptance + "good" Cherenkov rings matched
 - 2) 0/1 lepton of each $\gamma \rightarrow e^+e^-$ pair allowed outside RICH acceptance (\rightarrow no ID)
 - 3) 0/1/2 leptons allowed outside RICH acceptance

2-photon reconstruction efficiency:

case $3 \equiv 100\%$, case 2:55%, case 1:10%

additionl cuts on:

$$\Theta^{\text{e+e-}} < 1^{\circ}$$
 ($<\!2^{\circ}$)
$$M^{\text{e+e-}} < 10~MeV/c^{2} \qquad (<20~MeV/c^{2})$$
 only for $\eta\colon\;\Theta^{\gamma\gamma} < 40^{\circ}$

• including external conversion increased π^0 yield 4x

origin of conversion

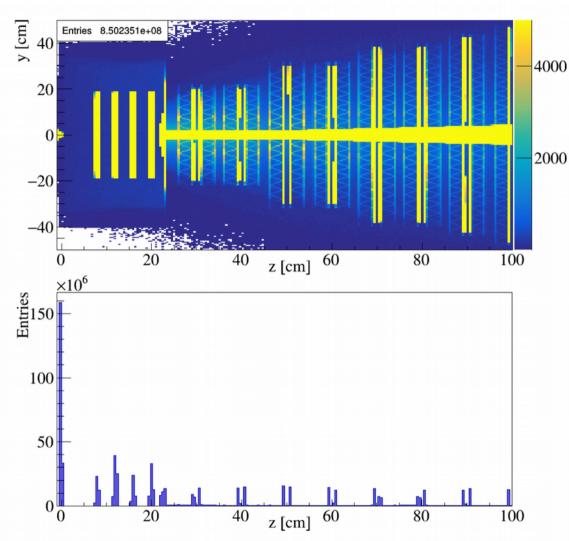


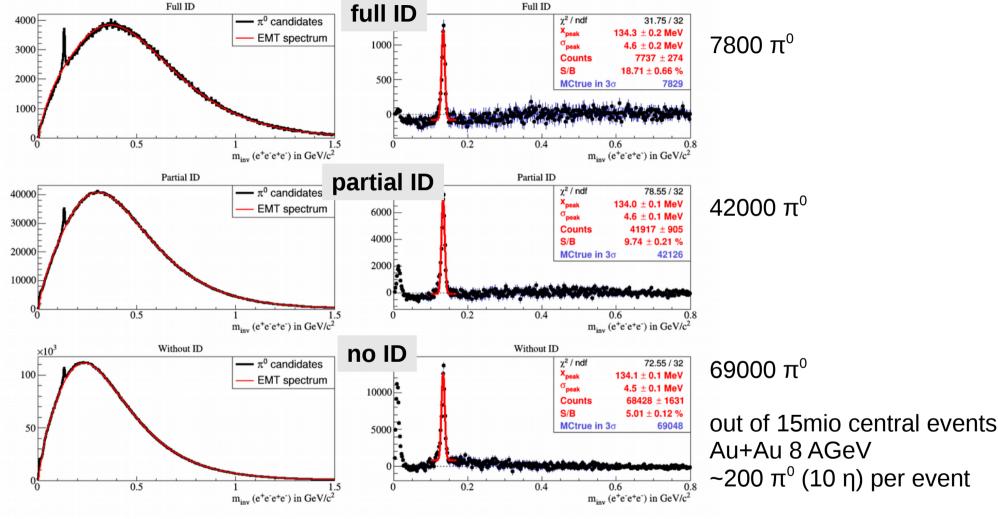
Figure 5.1: Start vertices of leptons coming from conversion of photons (taken from MCTracks array). Vertical yellow lines on top picture and blue lines on bottom picture display target position $(0-1~\rm cm)$, four MVD stations $(z=8-20~\rm cm)$, and eight STS stations $(z=30-100~\rm cm)$. Several additional sources of conversion are also recognizable on pictures: beam pipe inside the STS detector, carbon ladder holding structures of the STS detector, and exit window from the vacuum box of the MVD detector ($\sim 23~\rm cm$).

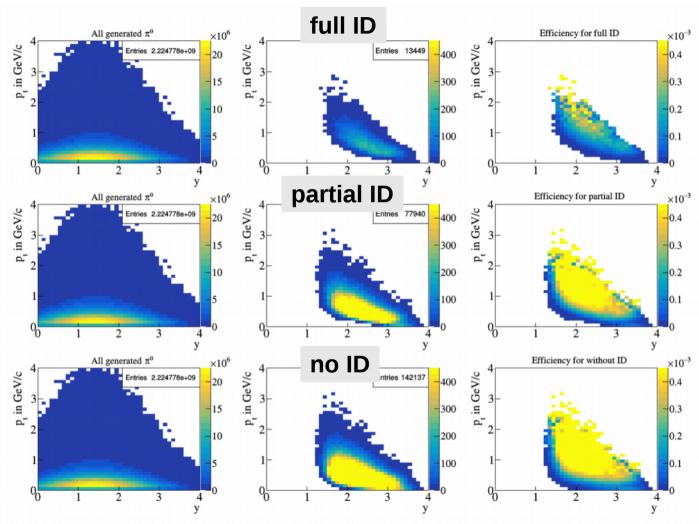
conversion probability for a single photon:

28% inside target (250 μm Au) 29% inside MVD 43% in STS+beampipe

And this was in 2017 setup, certainly less dead material (unrealistic) than now (!)

pi0 reconstruction (15mio central events) for the 3 RICH el.ID cases (full / partial / no)




Figure 6.6: Resulting invariant mass spectra of π^0 candidates (left) and background-subtracted spectra (right) reconstructed by applying double conversion method with cuts on invariant mass of photons $m_{inv}(e^+e^-) < 10 \text{ MeV/c}^2$ and opening angle of photons $\Theta_{e^+e^-} < 1^\circ$ using different identification approaches: full (upper row), partial (middle row), without (bottom row).

eff x acc. ~ 10⁻⁵ !!!

2x more using less strict cuts

2-dim. efficiency for π^0

pi⁰ efficiency inside acceptance ~ 10⁻³

single photon conversion prob:

in target: 2.9%

in MVD +STS1-4: 2.7%

better phase space coverage for less strict electron-ID

rapidity range: 3.8 > y > 1.5 due to acceptance: $2.5^{\circ} < \theta < 25^{\circ}$

Figure 6.5: Reconstruction efficiency of π^0 as function of transverse momentum p_t and rapidity y for all 3 discussed analysis approaches: full (upper row), partial (middle row), without (bottom row).

reconstruction of η - based on sample of 15 mio events

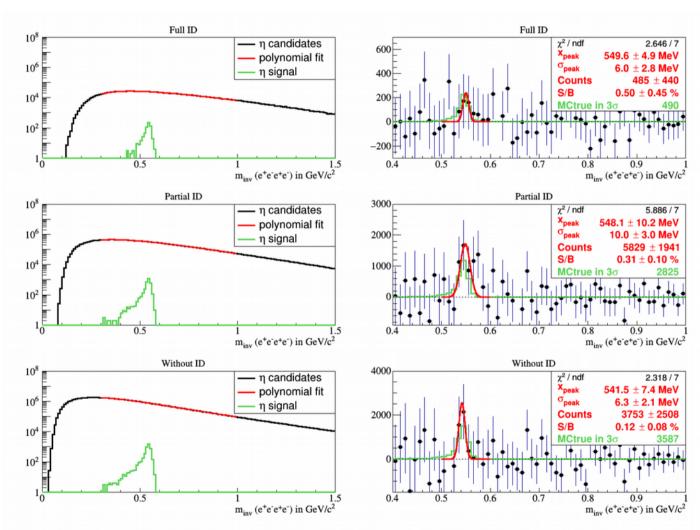


Figure 7.3: Reconstructed (left column) and background-subtracted (right column) invariant mass spectra of η meson from the $\eta \to \gamma + \gamma/\gamma^*$ decay channel using different lepton identification approaches: full (upper row), partial (middle row), without (bottom row). Green line at all graphs shows correctly reconstructed η signal contained in spectra.

only 500 – 3500 reconstr. eta out of 15 mio central events

S/B ratio 0.1 - 0.3 %

how to get larger statistics

- at time of analysis (2018), 15 mio sample already 30 Tb of disk space
 - despite no TRD, TOF, ECAL, PSD included!
 - only 0.3 Tb of these contain events with eta undergoing conversion
- larger statistics only possible using tricks (at that time):
 - discard all events without eta conversion, adjust Event-Mixing background accordingly
 - or: only add histograms, discard all simulation files again during simulation

100 mio event sample for eta conversion analysis

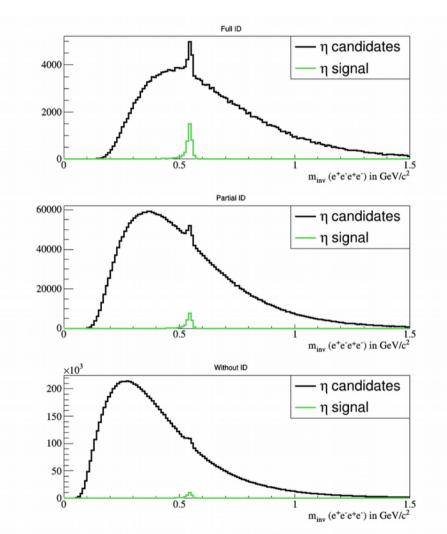


Figure 7.5: Reconstructed invariant mass spectrum of η from "signal-enriched" simulated sample using three analysis approaches: full (upper), partial (middle), without (bottom).

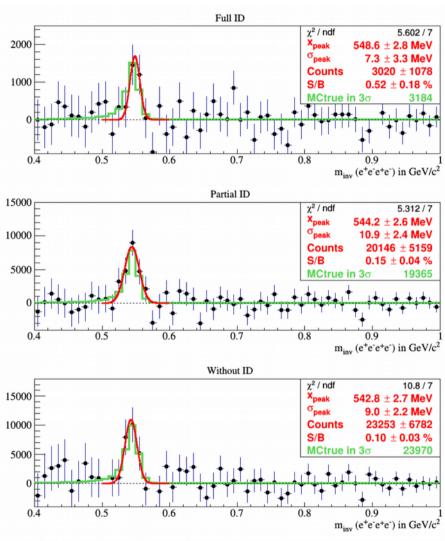


Figure 7.6: Reconstruction results for the $\eta \to \gamma + \gamma/\gamma *$ decay channel using combined invariant mass spectra corresponding to 100 million central Au+Au events. Three cases of particle identification are listed: full (upper), partial (middle), without (bottom).

100 mio central events ~~ 30h data taking at 100 kHz!

how to continue...

- The work shown here on conversion analysis is status 2018
 - outdated detector geometry
 - probably underestimated material budget (in particular STS, MVD)
 - unrealistic beam pipe
- progress in CBMROOT software
 - sparsification of event storage
 - GEANT3 → GEANT4
- Common Monte Carlo production (large statistics ?)
 - not only UrQMD, also other event generators
 - η (into photon decay) added from PLUTO
- Analysis so far only based on RICH for el ID
 - only using standard Hough-transfrom ringfinding approach
 - not using TRD

next steps and some ideas

• Get existing conversion analysis running again ...

- with up to date CBMROOT and geometry
- using MC common production samples

Based on the available MC common production:

- check double-conversion reconstruction at lower energies (p=3.3 / 4.5 / 8 / 12 GeV/c)
- influence of reduced magnetic field on reconstruction efficiency?
- double conversion reconstruction using standard 25 µm target possible ? (might be more than compensated by additional material budget...)
- how to properly normalize to η -enriched MC samples ? η reconstruction possible with 10 mio ?
- influence GEANT3 / GEANT4

• Optimize electron-ID in the RICH...

- investigate "backtracking" approach for el-ID. Use projected track to check hits in RICH, maybe pattern-matching instead of Hough transform
- make digitizer more realistic (cross talk! experience from HADES), check how el-ID performs
- first look into timing / time cuts?
- maybe include TRD into electron identification?
- Maybe: Combined analysis RICH+ECAL, 1γ via conversion, 1γ direct
- **Maybe:** look into proton-induced reactions : p+N
 - π^0 / η produced in pp / pn scattering
 - maybe reconstruction of rare eta decays ? $\eta \rightarrow e^+ e^-$??? (Still, HADES has one of the best limits measured in p+p and p+Nb)

further ideas?

- further ideas, suggestions and advice always welcome!
- some support might be needed since right now no experienced CBM-ROOT user in our group.