

EUROPEAN SPALLATION SOURCE

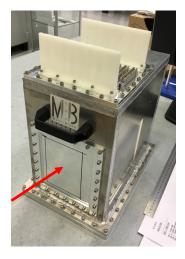
Neutron Detector Activities at ESS – the Multi-Blade

Eszter Dian, Giacomo Mauri, Francesco Piscitelli on behalf of ESS Detector Group

European Spallation Source ESS ERIC

4 September 2020, CREMLINPlus WP7 kick-off

The Multi-Blade detector

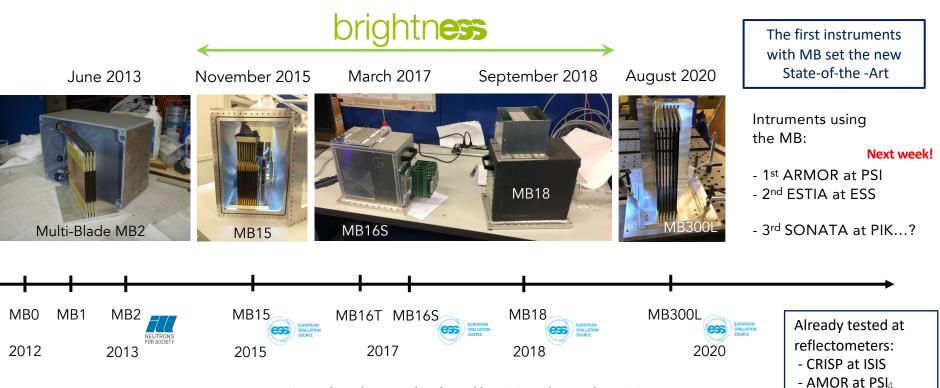


- Multi-wire proportional chamber
- Solid ¹⁰B₄C neutron converter
- Ar/CO₂ counting gas
- Reflectometers of ESS (ESTIA, FREIA)

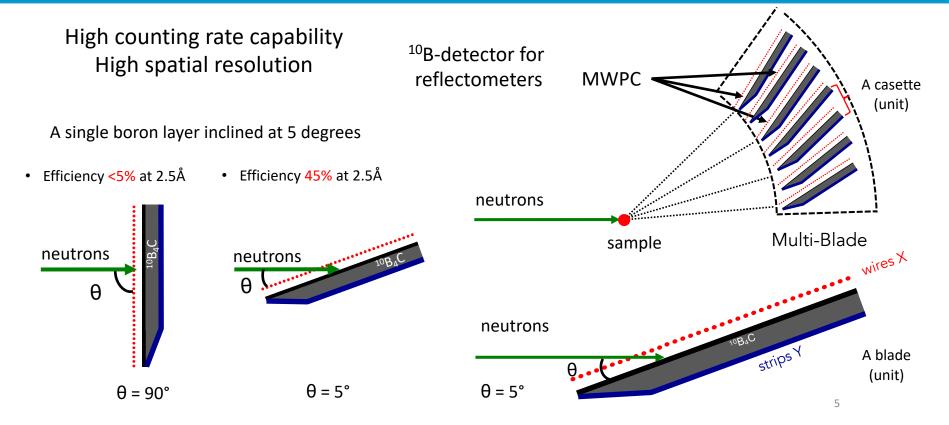
Challenge:


- High count rate capability
- High spatial resolution

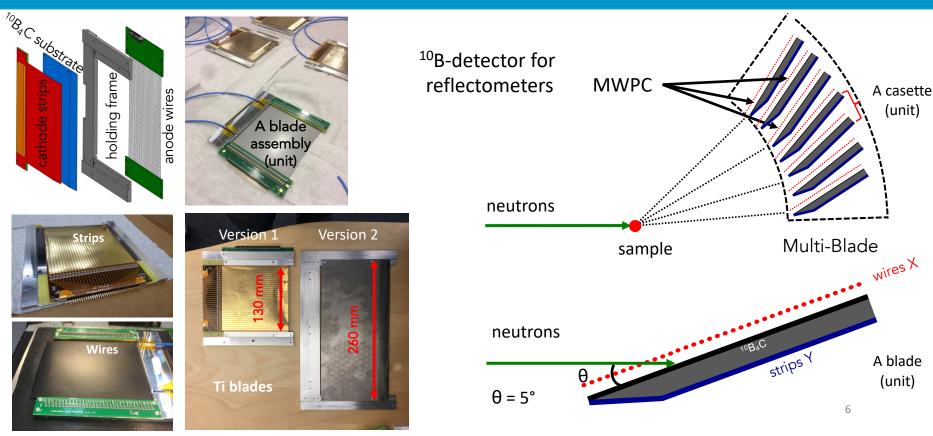
Aim beyond State-of-the -Art


History of the Multi-Blade detector

History of the Multi-Blade detector

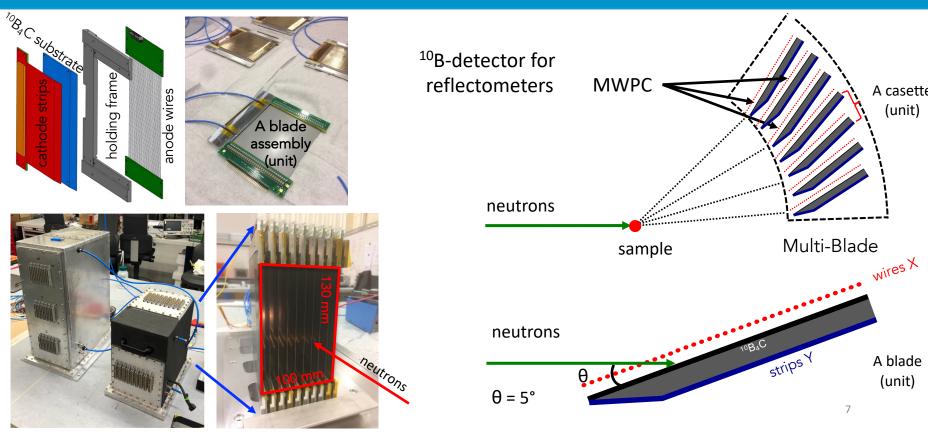


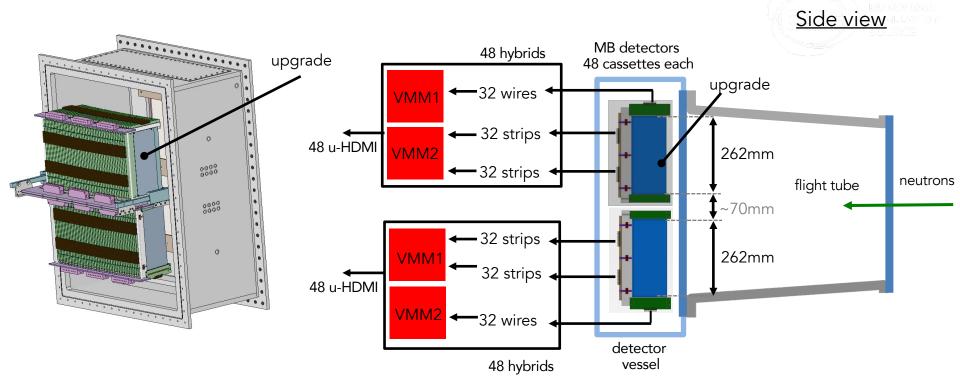
(Introduced at ILL, developed by ESS under BrightnESS)


The Multi-Blade concept

The Multi-Blade detector

The Multi-Blade detector

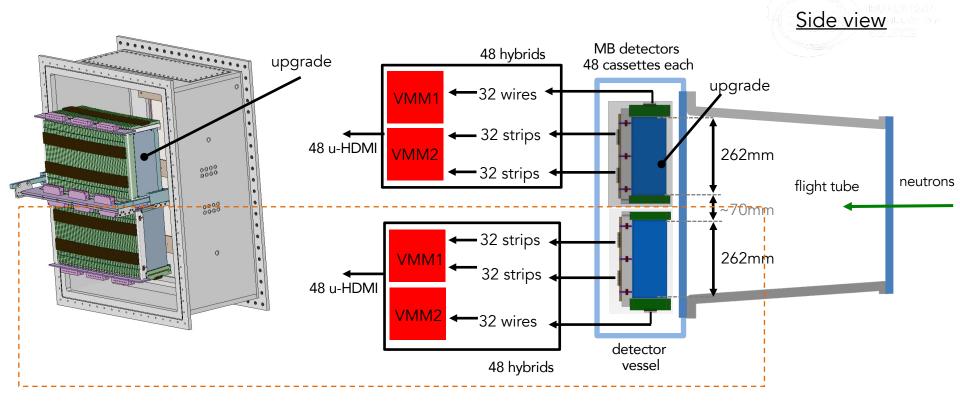

A casette


(unit)

A blade

(unit)

7



The Multi-Blade detector for the ESTIA@ESS

The Multi-Blade detector for the ESTIA@ESS

0 Multi-Blade Matching ESS requirements

Multi-Blade		
efficiency	44% @ 2.5 Å 57% @ 4 Å 82% @ 12 Å	
spatial resolution	0.5 x 3.5 mm ²	x3 better than state-of-the-art
uniformity	±2%	
stability	2% (over days)	
counting rate capability (peak rate)	>3.5 kHz/mm² (lower limit) >60kHz / 30mm² (lower limit)	>20 better than state-of-the-art
gamma-ray sensitivity	< 10 ⁻⁷ (with 100keV threshold)	as good as state-of-the-art
fast neutron sensitivity	< 10 ⁻⁵ (with 100keV threshold)	x100 better than state-of-the-art
gas gain	60-100	
overlap	50% eff. drop in 0.5mm gap]

The Multi-Blade detector for the ESTIA@ESS

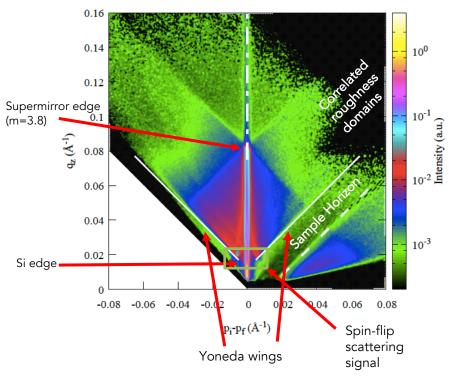
Requirements for reflectometry at PIK - SONATA instrument

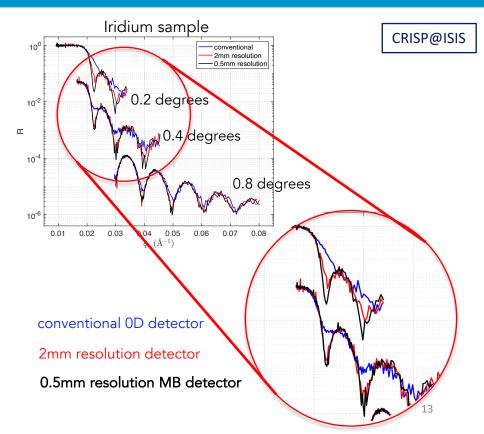
	Required design*	MB version 1 (including readout system)	MB version 2 (detector only)	
Sensitive area	400 × 400 mm ²	$100 \times 130 \text{ mm}^2$	$400 \times 260 \text{ mm}^2$	
Spatial resolution	2 × 2 mm ²	0.5 × 3.5 mm ²		×3-4 better than state-of-the-art
Overall count rate	1 MHz	> 100 MHz (depending n scattering pattern)		×20 better than
Count rate per pixel	50 kHz	13 kHz/mm ² @10% deadtime 50 kHz/px _{equivalent}		state-of-the-art
Efficiency (@ 2 Å)	40%	~ 44% (measured @ 2.5Å)		

* Communication with Evgeniy Altynbaev

Requirements for radiography at PIK

	Required design*	MB version 1 (including readout system)	MB version 2 (detector only)	
Sensitive area	100 × 100 mm²	100 × 130 mm ²	400 × 260 mm ²	
Spatial resolution	$0.1 \times 0.1 \text{ mm}^2$	0.5 × 3.5 mm ²		x3-4 better than state-of-the-art
Overall count rate	1 MHz	> 100 MHz (depending n scattering pattern)		
Count rate per pixel	100 kHz	13 kHz/mm ² @10% deadtime 50 kHz/px _{equivalent}		x20 better than state-of-the-art
Efficiency (@ 2 Å)	40%	~ 44% (measured @ 2.5Å)		
Gamma sensitivity	10 ⁻⁷	< 10 ⁻⁷ (with 100 keV threshold)		as good as state-of-the-art


* Communication with Evgeniy Altynbaev


We could look at how much we can increase the resolution, maybe 0.2 mm × 1 mm ...?

Some scientific results

Off-specular scattering from Fe/Si neutron supermirror Measure with the MB detector

Summary

The Multi-Blade detector:

- A well-understood Ar/CO₂-filled MWPC with solid ¹⁰B₄C converter
- Detector design with a decade worth of optimisation
- Already tested at reflectometers at ISIS and PSI
 - Already produced scientific data
 - Will be installed at AMOR next week

- Ready to set the new State-of-the-Art in reflectometry
- Ready to support word leading science

- G. Mauri et al., The Multi-Blade Boron-10-based neutron detector performance using a focusing reectometer, JINST 15 P03010 (2020).
- F. Piscitelli et al., Characterization of the Multi-Blade 10B-based detector at the CRISP reflectometer at ISIS, JINST 13 P05009 (2018).
- G. Mauri et al., Neutron reflectometry with the Multi-Blade 10B-based detector, Proc. R. Soc. A 474: 20180266 (2018).
- G. Mauri et al., Fast neutron sensitivity of neutron detectors based on boron-10 converter layers. JINST 13 P03004 (2018).
- F. Piscitelli et al., The Multi-Blade Boron-10-based Neutron Detector for high intensity Neutron Reflectometry at ESS, JINST 12 P03013 (2017).
- F. Piscitelli et al. Study of a high spatial resolution ¹⁰B-based thermal neutron detector for neutron reflectometry: the Multi-Blade prototype, JINST 9 P03007 (2014).

EUROPEAN SPALLATION SOURCE

871072

Thank you for your attention!