

IPHC-Strasbourg Group in CREMLINplus

M.Winter / ex IPHC-Strasbourg, 4 Septembre 2020

- IPHC \equiv one out of \sim 20 subatomic physics laboratories belonging to IN2P3/CNRS
- IPHC-Group: activity driven by future electron-positron collider experiments (e.g. ILC/Japan)
- IPHC-Group track: pionnered CMOS Pixel Sensors (CPS) for subatomic physics

IPHC-Strasbourg Group in CREMLINplus

• PERSONNEL CONCERNED:

- Particle Physicists: 3 staff physicists, 1 staff instrumentation physicist, 2 post-docs
- ASIC designers (6 PhD): 10 staff engineers, 2 PhD students
- Electronicians : 4 staff engineers
- Technical support from IPHC services: micro-technics & mechanics workshops
- MAIN ACTIVITIES:
 - Activities mainly instrumental, targetting future e+e- colliders: (supported by phys. studies)
 - → R&D on highly granular and thin CMOS pixel sensors (+ 2-sided ladders):
 design, electronic tests, characterisation, detection performance evaluation
 - \rightarrowtail full prototyping until final production
 - Domains of application: predominently subatomic physics and some spin-off domains
 - \hookrightarrow exploiting synergy between tracking devices for heavy-ion and lepton-collider expts

Emblematic Devices Equipped with CPS

EUDET BT: running since 2009

STAR-PXL: Physics 2014 \rightarrow 2016

ALICE-ITS2: in construction

CBM-MVD: under development

Location of Devices based on CPS from PICSEL

Activities Foreseen within CREMLINplus

• Development of the CMOS Pixel Sensor (MIMOSIS) for the CBM-MVD at FAIR:

- MIMOSIS-1 expected to be available within consortium \lesssim Q4/'21
- MIMOSIS-2 expected to be available within consortium \lesssim Q4/'22 (?)

• Development of CPS for an expt at the International Linear Collider (ILC):

- Main objective: vertex detector and inner trackers composed of double-sided layers
- R&D goals: squeeze time resol. & power consumption while keeping achieved spatial resol. (few μm)
- Starting point: improve time resolution of MIMOSIS

• Explore newly available products of CMOS industry:

- Exploit stitching possibilities (multireticle sensors) within ALICE-ITS3 project (tbc)
- Develop CPS in 65 nm CMOS technology within CERN-ALICE R&D project

• Develop ultra-light double-sided ladder equipped with MIMOSIS:

• Follow-up of PLUME ladder concept (2x6 MIMOSIS-26 sensors)

• Others: CPS in CMOS-Sol, 2-tier CPS, ...

CPS Design Required for the MVD: MIMOSIS Sensor

- MIMOSIS derived from ALPIDE pixel array read-out architecture (ITS, MFT)
- Required radiation tolerance significantly higher than ALPIDE

 $(\gtrsim$ 10 times higher locally)

• Required data throughput \sim 10 times higher than ALPIDE

(hit density actually up to $\sim 10^2$ times higher locally)

	ITS (IB)	CBM (1 st station)
Radiation Load TID	~270 krad	3 Mrad @ -20°C, 1 Mrad @ +30°C
Radiation Load NIEL	~1,7x10 ¹² 1MeV n _{eq} /cm ²	3x10 ¹³ n _{eq} /cm ² @-20°C, 1x10 ¹³ n _{eq} /cm ² @+30°C
Peak hit rate	~1,25x10 ⁶ /cm²/s → 1,25x10 ⁴ /mm²/s	7x10 ⁵ /mm ² /s (x 56 times than ITS)
Trigger	yes	no
Heavy Ion Effect		

• Fully revisited digital circuitry (data sparsification & transfer logic)

MIMOSIS Overview

7

Mimosis Reticle status (19 Sept 2019)

- Dimensions : X = 31 100.16 μm Y = 25 500 μm
- Around 25 to 27 reticle / wafer
- For all chips, a first version have been provided by the collaboration
- Need to adjust the dicing plan

gregory.bertolone@iphc.cnrs.fr

6 variants of epi-layer to achieve $T_{coll}^Q < 1$ ns

Partners of the submission besides IKF-GSI-IPHC:

• IHEP-Beijing: CEPC

• CPPM-Marseille: β imaging

- CERN: ATTRACT & LHC IMNC-Orsay: β imaging
- SMU-TX: PLL/MIMOSIS

Back from foundry and diced in July 2020

ICUBE-Strasbourg (CNRS): ultra-fast imaging

First Functionnal Tests of MIMOSIS-1

- Reacts to I2C Slow Control commands, gets configurated as expected
- Data flow properly acquired by DAQ and decoded (header, data information, trailer)
- Various hit pixel patterns generated, which get all faithfully encoded and read
- The whole pixel array reacts appropriately to ${}^{55}Fe$ source illumination

Exploration of TJsc 65 nm CMOS Technology

- Newly accessible 65 nm imaging CMOS technology via ALICE-ITS coll. and CERN-EP
- Submission for fabrication of exploratory structures & chips foreseen at "end of Septembre" (MLR-1)
- IPHC: small pixel arrays (15μm, 25μm, possibly 20μm, pitch; DC & AC); in-pixel VFE variants; analog DACs contributions to O(100) ps in-pixel amplification circuitry (AC/DC input node)

CE65 VARIANTS

Variant A

- pixel pitch: 15um
- matrix size: 64x32
- 3 sub-matrices: Amp (AC)/ Amp (DC)/SF (DC)
- provides space for DACs (fully separated from matrix)

Variant B

- pixel pitch: 25um
- matrix size: 32x32
- 2 sub-matrices: Amp (AC)/SF (DC)

