

Toward next generation neutron detectors (for ESS and PIK)

Richard Hall-Wilton

Detector Group Leader

On behalf of ESS Detector Group and Collaborators

www.europeanspallationsource.se

CREMLINPlus WP7 Meeting, 4 Sep 2020

Neutron Science Pushes the Boundaries

Upcoming Research Facilities

New facilities needed to:

replace capacity from closing research reactors
enhance capability to enable new science

CSNS (Dongguan) Started in 2018 20 instruments to be built 乐党IIIIe

Helium-3 Crisis

an appropriate

initial reaction ...

EUROPEAN SPALLATION SOURCE

Comment: seems to be some naivety at the moment as stocks are being emptied rapidly

Aside ... maybe He-3 detectors are anyway not what is needed for ESS? eg rate, resolution reaching the limit ...

Crisis or opportunity ... ?

What is Neutron Scattering Science?

Why Neutrons?

- 1) Ability to measure both energy and momentum transfer Geometry of motion
- 2) Neutrons scatter by a nuclear interaction => different isotopes scatter differently H and D scatter very differently
- 3) Simplicity of the interaction allows easy interpretation of intensities Easy to compare with theory and models
- 4) Neutrons have a magnetic moment

Neutrons as a probe

Neutrons see the Light Elements

NSS Project scope: 15 neutron instruments + test beamline + support labs

EUROPEAN SPALLATION SOURCE

ESS Instrument Layout (September 2017)

Layout of a Neutron Instrument

Neutron Detectors

Neutron Detectors

Efficient neutron converters a key component for neutron detectors

Isotopes Suitable as Cold and

^o Theory meval Neuverlength & Convertors

reaction	energy	particl	e energy	particle	energy
$n(^{3}He, p)^{3}H$	+0.77 MeV	р	0.57 MeV	³ H	0.19 MeV
n (⁶ Li, α) ³ H	+4.79 MeV	α	2.05 MeV	³ H	2.74 MeV
$^{93\%}$ n (10 B, α) ⁷ Li +2.3 N $^{7\%}$	$AeV + \gamma (0.48MeV)$	α	1.47 MeV	⁷ Li	0.83 MeV
$n(B, \alpha)$ Li	+2.79 MeV	α	1.77 MeV	Li 'Li	1.01 MeV
n (²³⁵ U, Lfi) Hfi	$+ \sim 100 \text{ MeV}$	Lfi ·	< = 80 MeV	Hfi	< = 60 MeV
n (¹⁵⁷ Gd, Gd) e ⁻	+ < = 0.182 MeV	conver	sion electron	0.07	to 0.182 MeV

- Only a few isotopes with sufficient interaction cross section
- To be useful in a detector application, reaction products need to be easily detectable

Table 1: Commonly used isotopes for thermal neutron detection, reactionproducts and their kinetic energies.ILL Blue Book104

- In region of interest, cross sections scale roughly as 1/v
- G. Breit, E.Wiegner, Phys. Rev., Vol. 49, 519, (1936)

dN / dE

 Presently >80% of neutron detectors worldwide are Helium-3 based

State of the Art of Neutron Detectors

EUROPEAN SPALLATION SOURCE

- Helium-3 Tubes most common
- Typically 3-20 bar Helium-3
- 8mm-50mm diameter common
- Using a resistive wire, position resolution along the wire of ca. 1% possible

Curved 1D MSGC for the D20 Powder Diffractometer (2000)

- First micro pattern gaseous detectors was MSGC invented by A Oed at the ILL in 1988
- Rate and resolution advantages
- Helium-3 MSGCs in operation

Challenge for Rate

What can be done with this brightness?

Instrument Design	Implications for Detectors
Smaller samples	Better Resolution (position and time) Channel count
Higher flux, shorter experiments	Rate capability and data volume
More detailed studies	Lower background, lower S:B Larger dynamic range
Multiple methods on 1 instrument Larger solid angle coverage	Larger area coverage Lower cost of detectors

Developments required for detectors for new Instruments

What can be done with this brightness?

What does a factor 10 improvement imply for the detectors?

Implications for Detectors	Implications for Detectors
Better Resolution (position and time)	sqrt(10)
Channel count	pixelated: factor 10 x-y coincidence:sqrt(10)
Rate capability and data volume	factor 10
Lower background, lower S:B Larger dynamic range	Keep constant implies: factor 10 smaller B per neutron
Larger area coverage Lower cost of detectors	Factor of a few

Developments required for detectors for new Instruments

Requirements Challenge for Detectors for ESS: beyond detector present state-of-the art

EUROPEAN SPALLATION SOURCE

Increase factor detector area

Resolution and Area Requirements

Baseline Detector Technologies for Initial Suite

Detectors for ESS: baseline for selected instruments

Instrument class	Instrument sub- class	Instrument	Key requirements for detectors	Preferred detector technology	Ongoing developments (funding source)
	Small Angle	SKADI	Pixel size, count-rate,	Pixellated Scintillator	SonDe (EU SonDe)
Large-scale	Scattering	LOKI	area	10B-based	Boron Coated Straws
structures	Reflectometry	FREIA	Pivol sizo, count rato	10D based	MultiBlade (EU BrightnESS)
		ESTIA	Fixel Size, count-fate	TOD-Daseu	
	Powder diffraction	DREAM	Pixel size, count-rate	10B-based	Jalousie
Diffusction		HEIMDAL		10B-based	Jalousie
Dimaction	Single-crystal	MAGIC	Pixel size, count-rate	10B-based	Jalousie
	diffraction	NMX	Pixel size, large area	Gd-based	GdGEMuTPC(EU)
	Strain scanning	BEER	Pixel size, count-rate	10B-based	AmCLD, A1CLD (HZG)
Engineering	Imaging and tomography	ODIN	Pixel size	Scintillators, MCP, wire chambers	
	Direct geometry	C-SPEC	Large area		
		T-REX	(³ He-gas unaffordable)	10B-based	MultiGrid (EU BrightnESS)
Spectroscopy		VOR			
	Indirect geometry	BIFROST	Count-rate	3He-based	He-3 PSD Tubes
		MIRACLES		STIE-Dased	He-3 PSD Tubes
		VESPA	Count-rate	3He-based	He-3 PSD Tubes
SPIN-ECHO	Spin-echo	tbd	tbd	3He-based/10B-based	

arXiv:1411.6194

Good dialogue and close collaboration needed for successful delivery and integration

Backgrounds

Background Observed in Detector = Background Flux at Detector X Sensitivity to Background

- Important in the design to reduce the background flux at the detector position
- (Don't just design shielding for Radio Protection Concerns)
- Different Sensitivity to different background components
- Sensitivity is a function of Energy
- There are many contributions to backgrounds:
- Non-Source Background:
 - Electronic noise: just needs to be eliminated
 - Cosmics, natural etc: shield locally and avoid local moderation
 - Alpha background from U and Th (esp. in Al): A. Khaplanov et al., JINST 10 P10019 (2015) arXiv:1507.00607
- Source-related background:
 - Gamma sensitivity: A. Khaplanov et al., JINST 8, P10025 (2013) arXiv:1306.6247
 - Fast Neutron sensitivity (Boron): G. Mauri et al., JINST 13 P03004 (2018) arXiv:1712.05614
 - Fast Neutron sensitivity (He3): G. Mauri et al., subm. EPJ TI, arXiv:1902.09870
 - Modelling local scattering: E. Dian et al., NIM A 902 (2018) 173 arXiv:1801.05686

E. Dian et al., "Suppression of intrinsic neutron background in the Multi-Grid detector", JINST 14 (2019) P01021, arXiv:1810.08706
G. Galgóczi et al., "Investigation of neutron scattering in the Multi-Blade detector with Geant4 simulations", JINST 13 (2018) P12031, arXiv: 1810.06241
M. Klausz et al., "Performance evaluation of the Boron Coated Straws detector with Geant4", subm. NIM A, arXiv:1904.05082

Some Thoughts on Background

At the detector, it is 100 times more important to remove <u>fast neutrons</u> than <u>gamma</u> At the detector, it is 10000 times more important to prevent <u>scattering and local thermalisation</u> than remove <u>fast neutrons</u> Historically the emphasis has been opposite

doi:10.1016/j.cpc.2014.11.009

http://nxsg4.web.cern.ch/nxsg4/

 New tools & utilities are recently developed for neutron studies

- Coherent scattering
- Inelastic scattering
- Single- and poly-crystals...
- And more
 - Communication
 - Visualisation
 - Ready-to use...

NCrystal

doi:10.1088/1742-6596/513/2/022017

K. Kanaki et al., "Simulation tools for detector and instrument design", Physica B <u>https://doi.org/10.1016/</u> <u>j.physb.2018.03.025</u> arXiv.org:1708.02135

Neutron diffraction in polycrystalline materials: Add-on for **GEANT4**

- GEANT4 is an invaluable simulation tool However, thermal/cold neutrons not well validated No support for crystal diffraction A new plugin NXSG4 allows neutron diffraction
- in polycrystalline materials
- Based upon nxs library, used in McStas, Vitess
- Using simple unit cell parameters, only low energy neutron scattering is overriden. All other GEANT4 capability retained.

$${}^{10}B + n \to {}^{7}Li^* + {}^{4}He \to {}^{7}Li + {}^{4}He + 0.48MeV\gamma \text{-ray} + 2.3 MeV \quad (94\%) \\ \to {}^{7}Li + {}^{4}He + 2.79MeV \quad (6\%)$$

Efficiency limited at ~5% (2.5Å) for a single layer

¹⁰B₄C Thin Film Coatings **ESS Thin Films Workshop**

- Co-located w/ Linkoping University for synergies: expertise&facilities
- Industrial coatings machine and production line setup
- Capacity: several times ESS needs & cheap
- If interested in coatings: contact us

Required property	Result	OK?	
Good adhesion	> 5 μ m on Al, Si, Al ₂ O ₃ , etc	;	¹⁰ B ₄ C
Low residual stress	0.09 GPa at 1 μ m $^{10}B_4$ C	(
Low impurities	H + N + Ə Ənly ~1 at.%	6	Si <u>1 μ</u>
High ¹⁰ B content	79.3 at.% of ¹⁰ B	;	• PVD magnetron scattering
n-radiation hard	Survive 10 ¹⁴ neutrons/cm ²	eran Atton Ge	Highly interdisciplinary effort

• Many substrates possible:

Publications:

*C. Höglund et al, J of Appl. Phys. 111, 104908 (2012)

μN

- *S. Schmidt et al, J. of Materials Science 51, Issue 23 (2016)
- *C. Höglund, Rad. Phys. and Chem. 113, 14-19 (2015);

EUROPEAN SPALLATION SOURCE

• Single layer is only ca.5%

JINST 8 (2013) P04020

Calculator:

arXiv:1801.07124

0.3

2

·50% @1.8Å

6

8

10

wavelength (A)

- Calculations done by many groups
- Analytical calculations extensively verified with prototypes and data
- Details matter: just like for ³He
- Multilayer configuration (example):

1 0.9 0.8 0.7 0.6 0.5 0.4

1.2um

16

12

14

optimized for distr.

optimized for 10A

optimized for 6.34A optimized for 1.8A

18

20

Multi-Grid

Multi-Grid Detector Design

- Designed as replacement for He-3 tubes for largest area detectors
- Cheap and modular design
- Possible to build large area detectors again
- 20-50m² envisaged@ESS

Multi-Grid test at CNCS

EUROPEAN

SPALLATION

brightness Realising Large Area Detectors

EUROPEAN SPALLATION SOURCE

Detailed Engineering Design, construction started

BrightnESS is funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 676548

The Intensity Frontier: The Multi-Blade Detector Design

Trend to follow in development within CREMLINPlus ...?

EUROPEAN SPALLATION SOURCE

Instrument Design	Implications for Detectors
Smaller samples	Better Resolution (position and time) Channel count
Higher flux, shorter experiments	Rate capability and data volume
More detailed studies	Lower background, lower S:B Larger dynamic range
Multiple methods on 1 instrument Larger solid angle coverage	Larger area coverage Lower cost of detectors

Developments required for detectors for new Instruments

Summary

• 4 major new neutron sources coming online in next decade

Brightness and science goals mean that the requirements for detectors cannot be met with todays state-of-the-art detectors
Helium-3 crisis means that the "gold standard" for neutron detection is no longer default option

• Helium-3 replacement technologies and the large amount of new instrumentation is driving the detector development.

• This is a very active topic

 Trend for better position resolution a good development path for CREMLINPlus ...

