
R3B DCS 2020
Bastian Löher (GSI) - C²DCS Meeting December 2020

Find the newest version of this presentation here:
https://docs.google.com/presentation/d/1RBTOeYpQERHvMuevA-VZ1FMwkWF1K2C-lw9JbC_kQvw
Additional slides here:
http://web-docs.gsi.de/~bloeher/rep/2019_r3b_meeting/bloeher.html



The R3B setup

Reactions with relativistic beams in inverse kinematics

● fixed target experiment, allows high-resolution kinematically complete measurements
● tracking of incoming beam & outgoing fragments (neutrons, light and heavy charged fragments)

Cave C



The R3B setup - Under control

Scope

● Goal is to control / monitor as much as needed for remote operation, minimize access to Cave C
● Parameters under control / monitoring:

○ Detector front-end cards
○ High / Low voltage power supplies
○ Power distribution units / power strips
○ VME / NIM crates
○ Motor controllers
○ Pressure gauges
○ Gas systems
○ Temperatures
○ Scopes
○ GSI FESA Accelerator parameters
○ R3B DAQ
○ some more I forgot…

● Today: Bits and pieces that have solved some of our problems



The R3B setup - Under control

Tools

● Building blocks
○ normal IOCs
○ PyEpics/bash - mostly small scripts
○ caproto - run control application
○ libca - interface with C (e.g. DAQ, helpers)

● Visualisation
○ old fashioned MEDM (CSS too cumbersome over SSH)
○ r3bcavalcade: SDL-based, ADL-parsing high performance GUI

● R3B specific
○ Monitoring tools
○ Control tools
○ Automation helpers



R3B Monitoring

Components

● Parameter Archiving - epics_collector
● Detector status - high level IOCs
● Common user entry point - whatsup
● Visual feedback - colorspill

New in 2020

● High performance visuals - r3bcavalcade
● Who is watching the watchers?



R3B Monitoring

epics_collector

● Problem in 2016:
○ want to store information from EPICS
○ not using CSS, BEAUTY not an option
○ archiver appliance seems too large
○ channel archiver old and busted?
○ no need for relational DB
○ no need for millions of PVs

● Additional request:
○ Store parameter data in the DAQ data stream

● Solution:
○ generic C library that connects to and monitors groups of PVs based on PV lists
○ several applications:

■ watcher (like camonitor)
■ archiver (using influxdb as backend)
■ drasi/mbs (acting as DAQ node, writing to data stream)

○ total 5k lines of code



R3B Monitoring

archiver

● Database: influxdb
● Visualisation: Chronograf
● Configuration via PV lists

○ automatically generated
● Currently logging ~600 PVs
● Command line interface to retrieve values
● Automatic restart



R3B Monitoring

high level IOCs

● Problem:
○ EPICS favors divide and conquer strategy → many IOCs for a single detector
○ Users would like to know the big picture

● Solution:
○ Per-detector high-level (soft) IOCs
○ Collection of:

■ seq records → mostly triggering fanout actions (e.g. “All On”, “Init”)
■ calc records → mostly fan-in / summary of status information

○ Definition of “Standard records for NUSTAR DCS”, that every IOC should implement
■ :ioc:status → bi record OK / not OK
■ :ioc:error → state record with error message
■ :ioc:state → state record with name of state

● Status:
○ Almost too much maintenance, need to

automate more



R3B Monitoring

single entry point

● Problem:
○ EPICS favors divide and conquer strategy → many IOCs for a single detector
○ Users would like to know where to start
○ Information scattered through the Wiki → hard to remember

● Solution:
○ Top level GUI element that links to everything else
○ Type ‘whatsup’ anywhere, and the user sees what’s up

● Today it looks a bit different, moving to auto-generated GUI



R3B Monitoring

colorspill

● Problem:
○ Life in the Messhütte can get boring at 3 am

→ Failures may go unnoticed
→ Long time to react

● Solution:
○ Install EPICS controlled RGB flood lights
○ Change colors based on system status
○ Beam on/off
○ DAQ failure
○ ...

Amazon



R3B Monitoring

r3bcavalcade

● Problem:
○ Neuland detector has many channels (currently 2400, planned 6000)
○ Users want to check voltage status on a single overview
○ MEDM goes into 100% CPU usage, slow update

● Solution:
○ Replace MEDM in this case with an

SDL-based program
○ Add also current monitoring
○ Updates @ ~10 Hz
○ CPU usage < 10%
○ Also fine over SSH

● Alternative?
○ How does phoebus fare with that many elements?



R3B Monitoring

quis custodiet ipsos custodes?

● Problem:
○ Things will go down / fail / reboot / get stuck
○ IOCs and services should come up again after failure
○ Would like to check status on a web page

● Solution(s):
○ procServ + cron: works! but no easy status overview
○ screen + cron: works! but one can use procServ, too
○ systemd: works! haven’t tried yet
○ supervisord: works! simple to set up, simple web interface, extendable

● Any suggestions from your side? What works, what doesn’t?



R3B Control
Tasks

● Parameter setpoints - commit/restore
● Controlling the DAQ - run control
● Getting input from the DAQ - adhocsoftioc



R3B Control

commit/restore

● Problem:
○ BURT is OK, but that’s about it
○ autosave / bumpless reboot does just that
○ Users would like to save and restore detector state, and save a note (timestamps too?)

● Solution:
○ git to the rescue!
○ Input: automatically generated PV lists
○ Central slow control repositories
○ One-button commit (+ commit message)
○ One-button restore (choose from list)

■ List is basic zenity



R3B Control

run control

● Problem:
○ DAQ and controls are two separate things
○ Users would like to collect information

when starting / stopping data taking
● Solution:

○ run_control
■ interface to DAQ (start / stop / status)
■ big, friendly buttons
■ gather meta information from EPICS, FESA, files
■ generate electronic logbook entry, run log
■ extensible via plugins
■ multi-user support

○ written in Python
○ using caproto to dynamically

build an IOC
○ controlled via MEDM
○ run once, control from anywhere



R3B Control

input from the DAQ

● Problem:
○ DAQ and controls are two separate things
○ EPICS should display information from the DAQ (scaler values)
○ EPICS should react on DAQ status (start / stop motion, Messhütte lights)

● Idea:
○ add EPICS PVs to parts of the DAQ software
○ listen to DAQ PVs to control other parts

● Problem 2: 
○ writing an add-on CA server in C is a bit of a hassle

● Solution:
○ adhocsoftioc: dbgen + fmioc
○ dbgen: generate a DB file during runtime
○ fmioc: fork a softIoc that uses the new DB
○ use normal libca to use the softIoc

Beam has spill structure
Normally, sweep run produces ‘holes’ 
Motion control knows about beam state 
→ Sweep run without spill structure

https://elog.gsi.de/land/s444_s473/193

Amazon



Helpers

Toolbox

● A new gateway - r3bcagw
● DNS / DHCP - r3b_sc_hosts
● Generators - r3bmap
● Network boot
● Power cycling
● Raspberry Pi I2C - nohadcon



Helpers

Local network + gateway(s)

● Pre-2016 many problems:
○ new devices need to be registered with central IT

→ think twice, if the new device really needs to be controlled
○ IT complains about strange data from our devices

→ frequent bug hunting
● Since 2016:

○ private slow control network with our own DNS
○ misbehaving hardware is contained
○ one gateway as fixed entry point
○ stop leaking EPICS broadcasts into GSI network

● Problem:
○ Standard EPICS gateway slow with many rules
○ Gateway should do aliasing (1000s of rules)

● Solution:
○ New gateway implementation: r3bcagw
○ Uses lists of aliases (automatically generated)
○ Much faster, but still a work in progress

● Currently moving to new hardware

local controls network

GSI network

IOC IOC IOC

DB
gateway

GUI

GUI

Client

Client



Helpers

DNS / DHCP

● Problem:
○ We are lazy
○ DNS / DHCP uses same/similar information in several files
○ Should be kept in sync

● Solution:
○ Keep information in one place
○ Generate files for BIND and DHCP server → r3b_sc_hosts
○ Handles several subnets
○ Handles grouping and options for e.g. PXE boot



Helpers

Generators

● Problem:
○ We are lazy
○ DB files, ADL files, PV lists are repetitive

● Solution:
○ Keep around fundamental mapping information (e.g. which detector channel is connected where?)
○ Generate DB, ADL, PV lists from this info and install in appropriate places
○ Collect all scripts in one repository → r3bmap
○ make && make install
○ Generates 6 MB of files from 20 kB of input
○ Also generates files for data unpacking and analysis

● Great boost to maintainability & flexibility
○ Most actions require a change in a single file + rebuild + install

■ Hardware replacement (hostname change)
■ Mapping change
■ ...



Helpers

Network booting

● Problem:
○ We are lazy
○ Many installations are similar (especially for raspberry Pi SBCs)

● Solution:
○ Install boot server with common root file system
○ Boot from there instead of local disks
○ Start services / IOCs based on hostname
○ Time for setting up a new raspberry Pi host ~1 minute



Helpers

Power cycling

● Problem:
○ We are lazy
○ Things lock up, one needs to pull the power cord

● Solution:
○ Connect everything to power distribution units (PDU)
○ Pull the plug over ethernet
○ Works also for VME / NIM crates (via SNMP)



Helpers

Raspberry Pi / I2C

● Problem:
○ We are lazy and we are impatient
○ Use Raspberry Pi to control Front-end settings
○ Init cycle takes ~10-15 minutes (threshold finding)

(This used to be ~1 h with LabView, before EPICS)
● Solution:

○ Remove HADCON, talk I2C directly
○ Communication 4x faster

● Side effect:
○ Use standard tools for debugging I2C comm

Raspberry

HADCON

USB

Front-end 
(FQT)

I2C



Summary

● Almost full control over Cave C
● Run control / logging
● Fast saving / restoring of values
● Everything under revision control
● Automation, where possible

The R3B DAQ / controls team

● Hans Törnqvist, Bastian Löher, Haik Simon, 
Håkan Johansson

NUSTAR DCS web page: 
http://web-docs.gsi.de/~land/nustar-dcs

Device support:
http://web-docs.gsi.de/~land/nustar-dcs/epics_

device_support.html

http://web-docs.gsi.de/~land/nustar-dcs
http://web-docs.gsi.de/~land/nustar-dcs/epics_device_support.html
http://web-docs.gsi.de/~land/nustar-dcs/epics_device_support.html


Questions ● Cosylab? Any experience?
● Per-detector gateway?
● Anomaly detection?


