

# DIRC 2011 International Workshop on Fast Cherenkov Detectors April 4-6, 2011 Justus-Liebig-Universität Gießen, Germany





## R & D status for the LHCb TORCH project

Thierry Gys on behalf of the LHCb-RICH group





## Talk layout



- LHCb upgrade
- TORCH concept
- Specifications and tests of commercial MCPs
- Readout electronics status
- Conclusions and perspectives

Material for this talk from: L. Castillo-García, M. Charles, J. Fopma, R. Forty, R. Gao, T. Gys





#### LHCb



- LHCb is one of the four major experiments at the LHC, dedicated to the search for new physics in CP violation and rare decays of heavy flavours
- It is a forward spectrometer (10–300 mrad) operating in pp collider mode Particle identification is provided by two RICH detectors currently equipped with three radiators: silica aerogel, C<sub>4</sub>F<sub>10</sub> and CF<sub>4</sub> gases







## Current LHCb performance and low-momentum PID at high luminosity



- LHCb detector is performing superbly: clean b-hadron signals accumulating rapidly
- Low-momentum particle ID in LHCb (2–10 GeV) is currently provided by aerogel
- Monte Carlo studies of high-luminosity (2×10<sup>33</sup> cm<sup>2</sup> s<sup>-1</sup>) running indicate that aerogel will be less effective, due to its low photon yield (< 10 detected photons/saturated track) and the high-occupancy environment





## LHCb upgrade plan



- Aim for installation of upgrade in 2017, during a planned long LHC shutdown
- Main focus is on trigger, which must be upgraded to handle higher luminosity
- Current bottleneck is at the hardware level that reduces 40 MHz bunch crossing rate to 1 MHz for readout into HLT
  - — read out complete experiment at 40 MHz into the CPU farm, fully-software trigger
- RICH system will be kept for PID with photodetectors replaced
- Propose to replace the aerogel with time-of-flight based detector
- First muon station will be removed
   → space available for new device





## **TORCH** concept



- TORCH (Time Of internally Reflected CHerenkov light) is a possible solution for low-momentum particle ID
- Closely related to the TOP concept of Belle II (see related talks in this workshop)
- Want positive identification of kaons in region below their threshold for producing light in the  $C_4F_{10}$  gas of RICH-1, i.e. p < 10 GeV

- Cherenkov light production is prompt
  - → use quartz as source of fast signal





#### Planar detector



- Cherenkov photons produced in the quartz transported to the end of the bar by total internal reflection, where their arrival would be timed
  - 70 ps overall resolution required per detected photon
- Need to measure angles of photons, so their path length can be reconstructed
  - ~ 1 mrad precision required on the angles in both transverse planes
- Borrow idea from the end-cap DIRC of PANDA\*: use a plane of quartz
  - → coarse segmentation (~1cm) is sufficient for the transverse direction ( $\theta$ x)
- \* see related talks in this workshop





T. Gys - TORCH R&D status - 5.4.2011

50 detected Cherenkov photons per track



## Focusing system



- To measure the angle in the longitudinal direction ( $\theta$ z) we use a focusing block, to convert angle of the photon into position on the photodetector
- Event display illustrated for photons from 3 different tracks hitting plane







#### Photon detection



Micro-channel plate (MCP) photodetectors are currently the best choice





- Anode pad structure can in principle be adjusted according to need
  - Smearing of photon propagation time due to photodetector granularity ~40 ps
  - Assuming an intrinsic arrival time measurement resolution per p.e. of 50 ps
     the total resolution per detected p.e. is 40 ⊕ 50 ~ 70 ps, as required



## TORCH modular design



- For the application in LHCb, transverse dimension of plane to be instrumented is  $\sim 5 \times 6 \text{ m}^2$  (at z = 10 m)
- Unrealistic to cover with a single quartz plate  $\rightarrow$  evolve to modular layout



18 identical modules
each 250 × 66 × 1 cm<sup>3</sup>

→ ~ 300 litres of quartz
in total

Reflective lower edge
→ photon detectors only needed on upper edge
18 × 11 = 198 units
Each with 1024 pads
→ 200k channels total

 reflection off the sides of the plate gives ambiguities in the reconstructed photon path



#### **TORCH** module



- Focusing block in quartz or plastic (should match refractive index)
- Cylindrical mirror
- Linear array of photon detectors
- Dimensions have been chosen to correspond to the Planacon MCP from Photonis
- Plate thickness (~ 1 cm) to be optimized once photoelectron yield known





#### Performance



- Full algorithm has been studied, including pattern recognition, using a simple simulation of the TORCH detector, interfaced to the full simulation of LHCb
- For particle ID, need to correct for the strong chromatic dispersion of quartz Achieved by measuring the photon angles, and knowing path of track through quartz
  - determine Cherenkov emission angle  $\cos \theta_{\rm C}$  = 1/  $\beta$   $n_{\rm phase}$   $t-t_0$  = L  $n_{\rm group}$  /c
- Effectively the wavelength of the photon is determined by this construction
- Excellent particle ID performance achieved, up to 10 GeV as required





#### **TORCH R&D**



- R&D has been launched on the following aspects:
  - Photodetectors
    - performance of existing MCP devices;
    - emphasis on single photoelectron response, efficiency and time jitter
    - design and development of suitable anode pad structure
    - · gain aspects vs lifetime
    - cost
  - Readout electronics
    - speed 40 MHz rate clocking synchronisation between boards/modules
    - gain noise cross-talk
  - Quartz radiator
    - polishing: required quality for total internal reflection
    - cost
  - Simulation
    - detailed simulation of TORCH
    - tagging performance in upgrade
- First results included in Letter of Intent for the upgrade submitted to LHCC





## MCP tests: laboratory material and commercial photodetectors



## Laboratory material

- Multi-channel buffers (MCB)
- Pulsed (~100ps) red (630nm) laser (Hamamatsu)
- Pulsed (~20ps) blue (405nm) laser (PiLas)
- Spectroscopy charge preamplifiers and shaping amplifiers
- Fast single-channel NIM electronics (ORTEC)
  - Fast amplifier and Constant Fraction Discriminator (CFD)
  - Time-to-Amplitude Converter (TAC)
- Fast clock generator (Stanford)
- Standard NIM electronics

#### Photodetectors

- Two 8×8-channel MCPs (Burle Planacons)
- Two single-channel MCPs (Photonis-NL)
- Possible loan of other single-channel MCPs (PMT210 from Photek)





## MCP tests – pulse height experimental setup







## MCP tests – time jitter experimental setup



## Light-tight box







## MCP tests – experimental setup photos (1)







## MCP tests – experimental setup photos (2)









## MCP tests – experimental setup photos (3)









## Specifications of 8×8-channel MCPs



#### XP85012/A1

- MCP-PMT planacon
- 8x8 array, 5.9/6.5mm size/pitch
- 25um pore diameter, chevron type(2), 55% open-area ratio
- MCP gain up to 10<sup>6</sup>
- Large gaps:
  - PC-MCPin: ~4mm
  - MCPout-anode: ~4mm
- 53mmx53mm active area,
   59mmx59mm total area -> 80%
   coverage ratio
- Total input active surface ratio ≤44%
- bialkali photocathode
- rise time 600ps, pulse width 1.8ns
- status:
  - 2 units delivered and under test at CERN
  - 1 "reject" unit at Oxford







## Planacons: time jitter signal shape



## MCP operating point

- HV 2100V
- LD intensity "low" SPE regime

#### CFD

- Amp jitter ~ 20ps
- Amp slewing ≤ ±40ps

#### TAC + MCB

- TAC range 50ns
- jitter 0.01% full range + 5ps
- MCA resolution 25ps/channel

## Other contributions to time jitter

- LD 100ps/20ps FWHM
- SYNCH ~ 20ps/2ps
- Various standard NIM electronics modules ...





## Planacons: pulsed red laser tests



- Operating conditions: HV=-2100V
- MCB:
  - 25ps resolution
  - 2048 channels
- Bleeder chain: 1:10:1 (175V – 1750V – 175V)
- Gain: 4 10⁵ e-
- $\mu \sim 0.48$  estimated from P(0)
- $\sigma \sim 205 \text{ ps}$



- non-optimal setup and operating parameters
- red laser SYNCH time jitter ~20ps



low intensity (SPE regime)





## Planacons: spatial scans - charge sharing - Point Spread Function







## Planacons: pulse height spectrum (blue laser) – fit



- HV=-2450V
- Gain: 5 10⁵ e-
- μ~0.51
- Fit according to Poisson distribution

$$P_{\mu}(N) = \mu^{N} \frac{e^{-\mu}}{N!}$$

Pedestal P(0)

$$P_{\mu}(0) = e^{-\mu} = \frac{A_0 \sigma_0 \sqrt{2\pi}}{total \ surface}$$

$$y = A_0 e^{-\frac{1}{2} \left(\frac{x - x_0}{\sigma_0}\right)^2}$$

Photoelectron peaks P(N)

$$P_{\mu}(N) = \frac{\mu^{N}}{N!} e^{-\mu} = \frac{A_{N} \sigma_{N} \sqrt{2\pi}}{total \ surface}$$

$$\sigma_N = \sqrt{N}\sigma_1$$





## Planacons: time jitter distribution (blue laser)



- Varying LD tune setting and ND fixed
- Fitting leading edge of peak (see next slide)





T. Gys - TORCH R&D status - 5.4.2011



## Planacons: time jitter distribution (blue laser) – $\sigma$ vs laser tune setting









Contributions to time jitter:

Time [x 6.25ps]

- MCP (photon energy, backscattering, intrinsic MCP jitter)
- Laser pulse width (tune setting)
- Synchronization pulse
- Residual TDC time walk
- Channel resolution
- (signal amplitudes)
- ..

$$\sigma = \sqrt{\sigma_{MCP}^2 + \sigma_{pulse}^2 + \sigma_{synch}^2 + \sigma_{CFD}^2 + \sigma_{TAC}^2 + \dots}$$



Time [ps]





## Planacons: time jitter distribution (blue laser) – $\sigma$ vs $\mu$



- Expected behaviour with:
  - optimal LD tune setting (60%)
  - varying ND filters



Time jitter  $\sigma$  [ps]

Average photoelectron number  $\mu$ 

T. Gys – TORCH R&D status – 5.4.2011



## Planacons: pulse height spectrum (blue laser) – single PE efficiency



- Q for one photoelectron ~ 6.9 10<sup>5</sup> e-
- Convert CFD threshold in charge
- Consider only 1<sup>st</sup> photoelectron peak







## Specifications of single-channel circular MCPs - reference tubes



- PP0365G "preliminary"
  - MCP-PMT tube
  - single channel (SMA connector)
  - 6um pore diameter, chevron type (2),~55% open-area ratio
  - low MCP gain typ. <10<sup>5</sup>
  - Small gaps:
    - PC-MCPin: 120μm
    - MCPout-anode:1mm
  - S20 photocathode on quartz
  - − 18mm active Ø
  - 6pF anode capacitance
  - rise/fall time 200ps "target"
  - bleeder chain 1-10-2
  - status:
    - 2 units delivered and under tests at CERN





Photonis -NL



## Single-channel MCPs: pulsed red laser tests



- Operating conditions: HV=-2340V
- MCB:
  - 25ps resolution
  - 2048 channels
- Bleeder chain: 1:10:2
   (180V 1800V 360V)
- Gain: 1.3 10<sup>5</sup>
- $\mu \sim 1.2$  estimated from P(0) and full fit
- $\sigma \sim 87 \text{ ps}$
- Notes:
  - red laser pulse FWHM ~100ps
  - red laser SYNCH time jitter ~20ps







#### Readout electronics



- Under development
- Starting with 8-channel NINO chips and HPTDC (high resolution mode), developed for the ALICE TOF
- Test-beam studies foreseen for this year







## Readout electronics - general assembly drawing







#### NINO Board status and tests







## **HPTDC-NINO Board status**



Layout completed, under final review

Board layout

Sourcing components for 14 boards







#### Interface / clock board



- Readout 4 HPTDC-NINO Boards
- FPGA for data formating, ethernet MAC driving the PHY chip
- Clock and trigger fanout
- Schematic stage







#### Readout electronics: overall status



- NINO Board under testing
- NINO-HPTDC Board layout finished
- Ethernet readout interface: schematics design
- Light-tight box assembled







Top: feed-through panel

B. left: front panel

B. right: light-tight box body with translation stage



## Conclusions and perspectives



- TORCH is a novel detector concept proposed for the upgrade of LHCb
   It is intended to complement the high-momentum particle ID provided
   by the RICH system aimed at providing excellent K-π separation up to 10
   GeV
- R&D is in progress, starting with the photodetector and readout electronics
  - MCP operating parameters & calibration under control
  - timing resolution O(40 ps) achieved with single-channel electronics with estimated  $\epsilon$  of O(90%) for single photoelectrons fine-tuning of electronics settings on-going
  - First readout electronics boards under electrical tests tests with real Planacon imminent - other boards at various developments stages
- Prototyping of quartz plates and focussing optics to follow
- Aim at testing basic performance in test beam this year
- Impact of the TORCH on tagging performance in the upgraded experiment is under study with detailed simulation
- Letter of Intent for the LHCb upgrade has been submitted





## SPARE SLIDES





## CFD timing properties





Fig. 1.3. Typical Walk vs. Pulse Amplitude.

Full scale is denoted by the Over Range LED turning on.

Measured with a pulse width of 300 ps FWHM.



Fig. 1.4. Timing Jitter vs. Pulse Amplitude.

Measured with the system in Fig. 1 by replacing the detectors with a pulser having a pulse width of 300 ps FWHM. Full scale is denoted by the Over Range LED turning on.



#### Where tracks are lost





Showing for kaons in MUL 1.0 at Lumi20





#### MC simulations: what comes next



- Get the software into SVN
- Known missing things that could be implemented in the current framework
  - switch to updated/modular design
  - Add tail to time resolution to mimic photoelectron backscattering
- Known missing things that need full GEANT simulation:
  - Multiple scattering (smears track angle; not negligible)
  - Non-toy track timing/propagation through B-field

