FGIR

Detector Control System for the Thermal Demonstrator

Marcel Bajdel

Thermal Demonstrator

Main features:
-Coolant temperature -40C
-Ambient temperature -10C
-Target for water content $\sim 35 p p m$, frost point -50C

General Considerations

Software side

\bullet Use of PANDA-IOC or \rightarrow GSI/FAIR IOC?
-Need for CA-gateway (Cooling Plant/Power Supplies)?
-Archiver choice \rightarrow AA (Redis? distributed appliances?)/Archiver Engine (PostegreSQL/ GSI support)

- FSM \rightarrow EPICS Sequencer \rightarrow where to run it?
- Kubernetes \rightarrow not straight forward transition from Docker-compose \rightarrow general safety considerations

Safety considerations

-Services should be only accessible by an expert (hidding crucial services from operator(s))
-Limit SSH access to nodes (authorization plugins to control user access)

- Network segmentation setting defined communication between services
- Proper security context for all the services (e.g. root privileges)
- Logging all the changes in the cluster
- Kubernetes provide Transport Layer Security for all API traffic
-Preventing containers from loading unwanted kernel modules

General Considerations

Devices

-Powering for SBCs using PoE switch?
-E.g. Raspberry Pi 3 B+ has (40-pin GPIO header unpopulated for Pi Zero and Pi Zero W, 27 pins for the $3 \mathrm{~B}+$) \rightarrow up to 30 DS18B20 per one pin? Powering requirements? Readout time?

- NI CompactDAQ interface to EPICS?

