Individually Recirculating ERLs and SRF Technology

Basis for future accelerators:

- New materials
- Future ERL technology
- \rightarrow Research for future ERL based options after HL-HLC

TECHNISCHE UNIVERSITÄT

DARMSTADT

Using a multi-turn sc ERL with PERLE as ERL prototype

FCC-he based on a multi-turn sc ERL

- Requirements:
 - Robustness
 - Reliability
 - Efficiency
 - Flexibility
 - \rightarrow Separated-beam-transport concept (twice-recirculating as example)

IP and $\Delta \phi = 180^{\circ}$

- 3 intertwined projects to support R&D for future large-scale facility ERLs
- Part of successful STENCiL Collaboration, continuation in TOSCA Collaboration

Higher order beam dynamics for individually recirculating ERL (Project 1)

- Beam-dynamics simulations for individually recirculating multi-turn ERL
- Focus on optimized energy resolution by non-isochronous optics and mitigation of non-linear effects

• 1 PhD position

Optimization of individually recirculating ERL operation (Project 2)

- Establishment of surrogate model of accelerator response function (Polynomial Chaos Expansion of output process variables)
- Identification of machine parameters critically affecting the beam tuning by transfer-entropy analysis
- Test model on low-current ERL (S-DALINAC)
- Optimization of injection section of future ERLs including booster
- Design study of a booster cryostat module for 802-MHz single-cell cavities (future ERL frequency)

2 PhD positions

TECHNISCHE

UNIVERSITÄT DARMSTADT

Nb₃Sn thin film coating (Project 3)

- Enhancement of cavities by Nb₃Sn treatment
- Test on single-cell Cu cavity, measurement in vertical bath cryostat
 - 1 PhD position
 - 60% Postdoc position
 - Invest for sputtering process

Picture by F. Marhauser (JLAB)

