CZECH PARTICIPATION AT FACILITY FOR ANTIPROTON AND ION RESEARCH (FAIR) AND NUCLOTRON-BASED ION COLLIDER FACILITY (NICA)

Tests of radiation hardness of SiPMs and scintillators

Vasily Mikhaylov on behalf of team of Nuclear Physics Institute of the Czech Academy of Sciences

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Calorimeter radiation hardness

Proton irradiation study of \succ polystyrene scintillators. Simulation of polyethylene \succ ar manni neutron shielding. Neutron irradiation study of Silicon Photomultipliers. **CBM PSD BM@N FHCAL**

Neutron shielding simulation

- We reduced the neutron flux by 50-70% adding borated polyethylene between the calorimeter module lead/scintillator blocks and SiPMs.
- Low energetic neutrons are shielded the best, so we reduce the neutrons captured in SiPM by silicon and dopants, especially ¹⁰B dopant having huge n cross-section.

Irradiation tests of scintillators

2 tests conducted in 2019 by V. Kushpil, N. Karpushkin, V .Mikhaylov, A. Ivashkin (takes this photo)

Scintillators irradiated at neutron generator of Cyclotron U-120M in NPI

V. Mikhaylov, Tests of radiation hardness of SiPMs and scintillators, CREMLINplus WP2 kick-off meeting, 01.07.2020

Irradiation tests of Silicon Photomultipliers

backup

Calorimeter radiation conditions

Enlarged beam hole 6x6 cm² -> 20x20 cm² significantly reduces the radiation damage

Scintillator irradiation test

- Scintillators were irradiated at NPI cyclotron by 1, 5, 10 kGy during 1 10 hours
- Light yield did not decrease up to 5 kGy. After 10 kGy it decreased by up to 20 %

Work was done by V. Kushpil, V. Mikhaylov, A. Ivashkin and N. Karpushkin

Neutron irradiation experiments

SiPM performance: dark current and response to LED

Linear dependence of dark current on fluence was observed.

SiPM signal response was measured during illumination with 10 ns short pulses from 400 nm LED.

Pulse height was chosen such that signal was detectable by all the SiPMs (very high).

Signal to noise ratio = $\int_{signal} / \sigma_{signal}$ Resolution = $\sigma_{signal} / \int_{signal}$

Overvoltage is 1 V for graphs with fluence dependence.

Zecotek SiPMs cannot withstand rates > 10 kHz – not suitable for CBM.

Hamamatsu SiPMs are the best, probably due to very small pixels New version performs slightly better

SiPM performance: quenching resistance and pixel capacitance

> Quenching resistance and pixel capacitance did not change significantly