CremlinPlus meeting: WP2: Task 2.3: Software packages for simulation and data analysis, participation in physics performance studies

MEPhI / GSI /FAIR activities

Arkadiy Taranenko Ilya Selyuzhenkov

July 1st, 2020 CREMLINplus WP2 kick-off meeting

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072

Connecting Russian and European Measures for Large-scale Research Infrastructures

Overview

- CREMLINplus: WP2: Task 2.3 description
 - Participating members of the CremlinPlus project
- Common software packages for simulation and data analysis
 - Centrality (multiplicity, spectators / fragments)
 - Collective flow
 - Fast and online-capable algorithms for track finding, event reconstruction and event selection
- Physics performance studies
 - Centrality & collective flow & femtoscopy
 - NICA (MPD / BM@N), FAIR (CBM)
 - Event generators
 - Repository for different energies, systems, configurations (EoS, etc)
- Summary and next steps

Planning a dedicated workshop on centrality & collective flow

CREMLINplus: WP2: Task 2.3

CREMLINplus WP2:NICA-FAIR/CBM WP Leader: Jürgen Eschke (FAIR) Deputy WP Leader: Yuri Murin(JINR)	FAIR 7,5 FTE over 48 Months (360 PM)	JINR 9 FTE over 48months (432 PM)	EKUT Tübingen 1 FTE (48 PM)	WUT Warsaw 2 FTE (96 PM)	Mephi Moscow 4 FTE (192 PM)	Wigner Budapest 2 FTE (96 PM)	NPI Rez 2 FTE (96 PM)	INR Moscow 1 FTE (48 PM)
Task 2.1: Integration, installation, and test of Silicon trackers for NICA and CBM (<u>FAIR</u> , JINR, EKUT) (Taskleader: Johann Heuser, GSI)	2	4	1					
Task 2.2: Developments for the data acquisition chain, for data preprocessing and computing (<u>WUT</u> , FAIR, JINR) (Taskleader: Wojtek Zabolotny, WUT)	2	2		2				
Task 2.3: Development of common software packages for simulation and data analysis, participation in physics performance studies (MEPhI, FAIR, JINR, Wigner RCP) Taskleader: Arkadiy Taranenko, MEPhI deputy taskleader: Ilya Selyuzhenkov, GSI	2	2			4	2		
Task 2.4: Development and construction of beam monitors, target chamber and beam pipe for NICA and CBM (<u>FAIR</u> , JINR) (Taskleader: Peter Senger, FAIR)	1	1						
Task 2.5: Development and construction of Zero Degree Calorimeters for NICA and CBM (<u>INR RAS</u> , NPI CAS) (Taskleader: Fedor Guber, INR)							2	1
Coordination of joint activities	0.5							

Participating members of the NRNU MEPhI / GSI

- Coordination
 - Arkadiy Taranenko (May 2020)
 - Ilya Selyuzhenkov (deputy, May 2020)

TEAM members:

- Volker Friese
- Eion Clerkin (May 2020)
- Dominik Smith (July 2020)
- Sergei Gorbunov (Sept. 2020)
- PhD students
 - Petr Parfenov (May 2020)
 - Evgeny Kashirin (May 2020)
 - Oleg Golosov (May 2020)
 - Evgenia Khizhnjak
- (currently master students, starting Ph.D. in 2021) Ilya Segal, Mikhail Mamaev, Alexander Demanov

MPD experiment at NICA

Collider experiment: Au+Au, Bi+Bi at $\sqrt{s_{_{NN}}}$ = 4-11 GeV

EP plane and centrality determination

- FHCal (2<|η|<5)
- TPC (|η|<1.5)

Time Projection Chamber (TPC)

- Tracking of charged particles within ($|\eta| < 1.5$, 2π in ϕ)
- PID at low momenta

Time of Flight (TOF)

PID at high momenta

CBM experiment at FAIR

Fixed target experiment $\sqrt{s_{NN}}$ = 2.5–4.9 GeV

EP plane and centrality determination PSD & MVD+STS, TOF Tracking (MVD+STS) 4 < theta < 25; φ : (0, 2 π) PID Time of Flight (TOF)

SIS100 primary beams: 10^9 /s Au up to 11 GeV/u 10^9 /s C, Ca, ... up to 14 GeV/u 10^{11} /s p up to 29 GeV

Centrality framework (developed in CBM)

Procedure is developed in CBM and tested with HADES, NA49, and NA61/SHINE:
V. Klochkov, I. Selyuzhenkov Acta Phys.Polon.Supp. 10 (2017) 919
V. Klochkov et, al. EPJ Web Conf. 182 (2018) 02132
Implementation in CBM: https://cbmgsi.githost.io/pwg-c2f/centrality

Centrality framework application: CBM @ FAIR

Centrality framework application: MPD @ NICA

 obtained from the different models are in reasonable agreement

 weakly depend on the size of the colliding system

Implementation in MPD: https://github.com/PeterParfenov/AnisotropicFlowMPD/tree/master/CentralityFramework

Centrality framework application: FAIR-PHASE-0 (HADES)

Consistent with published results in HADES centrality paper

HADES Collaboration Eur. Phys. J. A (2018) 54: 85 https://arxiv.org/abs/1712.07993

Fast and online-capable algorithms for track finding, event reconstruction and event selection

- Complex event topologies: hundreds of charged particles per event in the detector acceptance
- For CBM: streaming data; no event association by a hardware trigger
- Track finding and event selection to be performed in real-time at extreme interaction rates (up to 107/s)
- Need fast, robust and precise algorithms
- Employ inter- and intra-node parallelisation

Fast and online-capable algorithms for track finding, event reconstruction and event selection

- Track-finding approach in CBM: Cellular Automaton (central tracking system)
 - Fast and good efficiency event-by-event
- Challenge: further develop the algorithm
 - for free-streaming data & for downstream detectors
- Application in other experiments:
 - Demonstrated for STAR, ALICE, NA61/SHINE
 - Option for BM@N / MPD

Fast simulations for common Monte-Carlo productions

Development of fast simulation algorithms required for common high statistics Monte-Carlo preparation:

- Hadronic calorimeters for MPD, CBM, and BM@N
- Requires realistic detector load (event generators with fragments)

Event generators and flow data repository

Anisotropic flow at FAIR / NICA energies - Experimental Data ($\sqrt{s_{NN}}$):

- (1) E895 Collaboration Au+Au at 2.7, 3.32, 3.85 and 4.3 GeV
- (2) NA61/NA49 Pb+Pb at 5.1, 7.6 and 8.9 GeV
- (3) STAR Collaboration Au+Au at 4.5, 7.7 and 11.5 GeV
- (4) HADES Au+Au at 2.3 GeV
- (5) FOPI Au+Au at 2.00, 2.08, 2.40 GeV

Anisotropic flow at FAIR / NICA energies - Models:

- (1) String/Hadronic Cascade Models: UrQMD, HSD, SMASH, JAM, DCM-QGSM
- (2) Hybrid Models: viscous hydro+cascade (vHLLE+UrQMD and MUSIC+UrQMD) and parton/string models (AMPT, PHSD and PHQMD)

Anisotropic flow at FAIR / NICA energies physics performance study:

GEANT simulations + reconstruction in MPD (10M events for each point in energy): (1) UrQMD + GEANT4 + recontruction Au+Au at 4.5, 7.7 and 11.5 GeV; Bi+Bi at 7.7 GeV (2) vHLLE+UrQMD + GEANT4 + reconstruction Au+Au at 7.7 GeV; GEANT simulations + reconstruction in CBM:

(1) UrQMD at p_{lab} = 12, 3.3A GeV/c

(2) DCM-QGSM-SMM at
$$p_{Lab}$$
 = 12, 3.3A GeV/c

Anisotropic flow at NICA / FAIR energies

Anisotropic flow at NICA / FAIR energies reflects a delicate balance between:

- the ability of pressure developed early in the reaction zone and
- the passage time for removal of the shadowing by spectators

Event generators: comparison with experimental data - directed flow

Biggest difference between EoS in mid-central collisions

Event generators: comparison with experimental data - elliptic flow

Pure String/Hadronic Cascade models yield smaller v₂ signal compared to STAR data for Au+Au $\sqrt{s_{NN}}$ =7.7 GeV

Q_n-tools: corrections and analysis frameworks

Q_n-corrections framework developed for the ALICE experiment: J. Onderwaater, I. Selyuzhenkov, V. Gonzalez

Based on technique proposed in: I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

Q_n-Analysis framework (is being developed): L. Kreis & I. Selyuzhenkov

https://github.com/HeavyIonAnalysis/QnTools

Used configuration:

- Qn-vector:
 - Recentring
- u_n vector:
 - Recentring
 - twist+rescale
- Error calculations: Bootstrapping

Framework is tested and used in other experiments

Flow performance studies: MPD@NICA

Good agreement between MC and reconstructed signals Small difference between Au+Au and Bi+Bi

Flow performance studies: CBM@FAIR

CBM@FAIR: Flow performance studies

Good performance for anisotropic flow measurement of charged hadrons

Summary and next steps

- CREMLINplus: WP2: Task 3 description
 - Participating members of the CremlinPlus project
- Common software packages for simulation and data analysis
 - Centrality (multiplicity, spectators / fragments)
 - Collective flow
 - Fast and online-capable algorithms for track finding, event reconstruction and event selection
- Physics performance studies
 - Centrality & collective flow & femtoscopy
 - NICA (MPD / BM@N), FAIR (CBM)
 - Event generators
 - Repository for different energies, systems, configurations (EoS, etc)
- Summary and next steps

Planning a dedicated workshop on centrality & collective flow

List of deliverables for WP2: task 2.3

Deliverable number	Deliverable title	Lead beneficiary	Туре	Dissemination level	Due Date (in months)
D2.1	STS components assembled	14 - FAIR GMBH	Report	Public	24
D2.2	STS detectors tested	14 - FAIR GMBH	Report	Public	48
D2.3	Components of the STS data acquisition chain tested	32 - WUT	Report	Public	24
D2.4	Full functionality tests of the STS data acquisition chain	32 - WUT	Report	Public	48
D2.5	Simulation results for selected observables	7 - MEPhl	Report	Public	24
D2.6	Physics performance for major observables	7 - MEPhl	Report	Public	48
D2.7	Design of beam monitors, target chambers, beam pipes	14 - FAIR GMBH	Report	Public	12
D2.8	Beam monitors, target chambers, beam pipes constructed and installed	14 - FAIR GMBH	Report	Public	48
D2.9	Design of the ZDC detector modules	5 - INR RAS	Report	Public	12
D2.10	ZDC detector modules constructed and tested	5 - INR RAS	Report	Public	48

Workshop on analysis techniques for centrality determination and flow measurements at FAIR and NICA

The goal of the workshop is to assess the progress in the analysis techniques development related to the event characterization in heavy-ion collisions (centrality and reaction plane determination) and flow measurements at future CBM@FAIR and MPD@NICA experiments.

Also related to these topics experimental activities with relativistic heavy-ions at GSI (HADES) and Nuclotron (BM@N) will be discussed.

Dates: August 24-28, 2020 Indico link: <u>http://indico.oris.mephi.ru/event/181</u>

Organizing co-chairs Arkadiy Taranenko (MEPhI) Ilya Selyuzhenkov (GSI / MEPhI)

Backup slides

Centrality in STAR

- Uncorrected charged particle multiplicity distribution in TPC (|η|<0.5)
- Comparison with MC Glauber simulations
- Fitted using two-component model:

$$\frac{dN_{ch}}{d\eta}\bigg|_{\eta=0} = n_{pp} \left[(1-x) N_{part} / 2 + x N_{coll} \right]$$

Similar centrality estimator is needed for comparisons with STAR

Phys. Rev. C 86 (2012) 54908

Centrality in NA49 & NA61/SHINE

Centrality Framework developed by V. Klochkov and I. Selyuzhenkov was used in both experiments

Both charged particle multiplicity and energy deposition were used

Charged particle multiplicity in MPD at NICA

Reconstructed data:

- UrQMD 3.4 simulation
 - Au+Au, N_{ev}=500k, $\sqrt{s_{NN}}$ =5, 7.7, 11.5 GeV
 - Bi+Bi, N_{ev}=500k, $\sqrt{s_{NN}}$ =7.7 GeV
- GEANT4 MPD detector simulation
- Reconstruction procedure:
 - Realistic tracking in TPC (Cluster Finder)

Used particle selection:

- |η|<0.5
- p_T>0.15 GeV/c

Centrality framework results: MPD at NICA

Flow performance studies: FAIR PHASE-0 (HADES)

Investigating effects of occupancy corrections with MC vs. real data

Centrality framework results: MPD at NICA

Directed flow: model comparison

DCM-QGSM-SMM better describes v₁ in peripheral collisions

Event generators: comparison with experimental data - elliptic flow

3D hydro model vHLLE + UrQMD shows sensitivity of v2 to the EoS (XPT EoS vs 1PT EoS) and specific shear viscosity (η/s)

Flow performance studies: MPD@NICA - EP comparison

Flow performance studies: MPD@NICA - EP comparison

Centrality framework: application in MPD @ NICA

Centrality at MPD: model comparison

 obtained from the different models are in reasonable agreement

Flow performance studies: MPD@NICA

Small difference between Au+Au and Bi+Bi