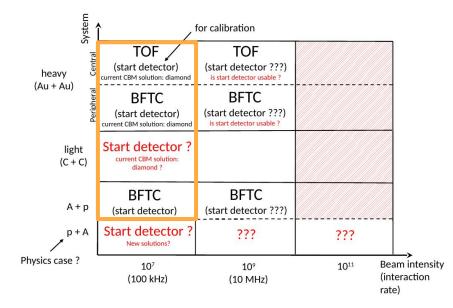
CREMLIN P_US

Connecting Russian and European Measures for Large-scale Research Infrastructures

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072

Beam monitor / T0 counter concept A. Rost, T. Galatyuk, J. Pietraszko


Outline

• CBM T0 requirements

- Beam detector system in CBM
 - \rightarrow Possible detector concept
 - \rightarrow Needed read-out concept
 - \rightarrow Idea of a beam focusing concept

• Summary and ToDo list

Introduction: CBM T0 requirements

[Ingo Deppner, Heidelberg University]

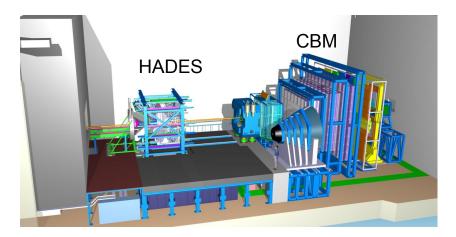
• A large variety of collision systems with different expected beam intensities will be used in the CBM experiment

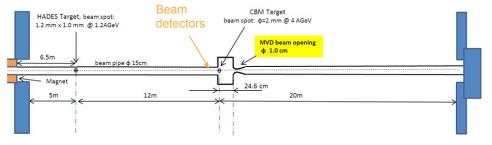
 \rightarrow We currently focus on the development of a beam detector system for HI at rates up to ~1 MHz/ch

 15 years experience with T0 in HADES (~10⁷ ions/s)

Beam detector system in CBM

Possible applications:

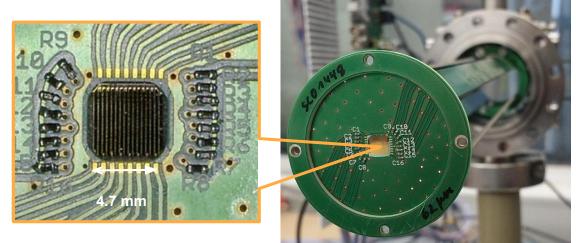

- Online beam quality monitoring:
 → Beam position, time structure, halo
- Start time of the reaction (T0) measurement


 \rightarrow Particle identification, pile-up rejection

● Part of a fast beam abort system → Independent readout system needed **Challenges:**

- Handle beam intensities up to 10⁷ ions/s
- Time precision < 50 ps
- Position information < 0.5 mm
- Low interaction probability
- In-vacuum operation

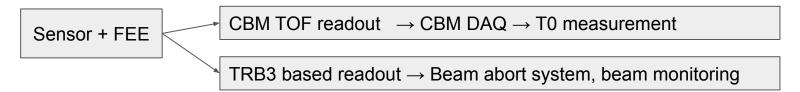
Beam detector system in CBM


- Beam size at CBM target: $\sigma_{x,y} < 1$ mm
- Target area and geometry details needed (i.e. segmented 1% interaction length, diameter 2 mm)
- Locate detectors as close as possible to the target
 - \rightarrow Compact sensor of ~ 1 cm^2
 - \rightarrow In-vacuum operation

Needed infrastructure: HV, LV power supplies, network infrastructure and readout system

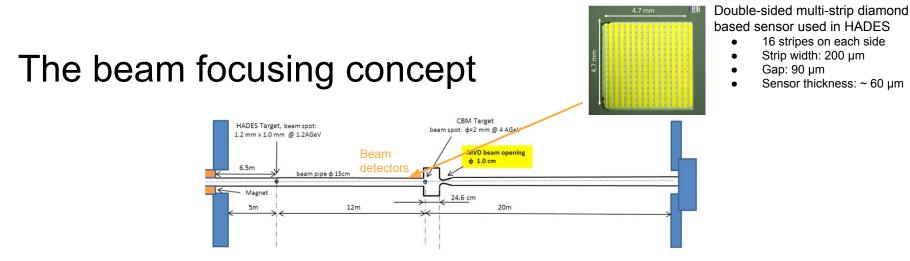
A detector concept based on CVD diamond

- Utilize segmented double sided pc(sc)CVD diamond sensors with a thickness of ~ 100 μm
 - \rightarrow Radiation hard
 - \rightarrow High rate capability
 - \rightarrow Low Z material
 - \rightarrow Sufficient time precision < 60ps
 - \rightarrow In-vacuum operation w/o cooling


[A. Rost et al., doi:10.18429/JACoW-IPAC2019-WEPGW019]

Example: Segmented diamond detector used in HADES

Sensor read-out concept


- Two independent readout chains are essential:
 - Standard CBM readout
 - Independent readout for beam monitoring and beam abort system

• Front-end electronic

→ Dedicated pre-amplifier board with analog or digital signal splitting (needed for an independent beam abort system)

- \rightarrow PaDiWa discriminator board?
- Beam abort system, beam monitoring concept needs to be prepared
 - \rightarrow Use TRB3 platform: FPGA based TDCs with a precision of 8 ps (RMS) [see <u>http://trb.gsi.de/</u>]
 - → Already well tested in several test and production beam times [A. Rost et al., doi:10.18429/JACoW-IPAC2019-WEPGW019]

16 stripes on each side Strip width: 200 µm

Sensor thickness: ~ 60 µm

Gap: 90 µm

- Focus in X/Y and in 7 need to be controlled and measured
 - Focus in X/Y
 - \rightarrow Use segmented diamond sensors and the STS tracking system
 - \rightarrow Correlate T0 pixels with reconstructed vertex from STS \rightarrow Target position
- Focus in Z direction still needs a conceptual design \rightarrow Diamond based tracking system?

Summary and ToDo list

- T0 reconstruction system with online beam monitoring capability based on diamond detectors
- Independent beam abort system \rightarrow concept in preparation

ToDo list:

- System concept (Sensor type?, beam abort system, beam focusing concept)
- Mechanical design of the system
- FEE and DAQ
- Full system test
- Installation

. . .

Deliverable/ Milestone	Title	Verification	Date
D2.7	Design of beam monitors	Report	12/2020
MS10	Technical design of beam monitors	Report	12/2022
D2.8	Beam monitors	Report	12/2023

Thank you for your attention!!!