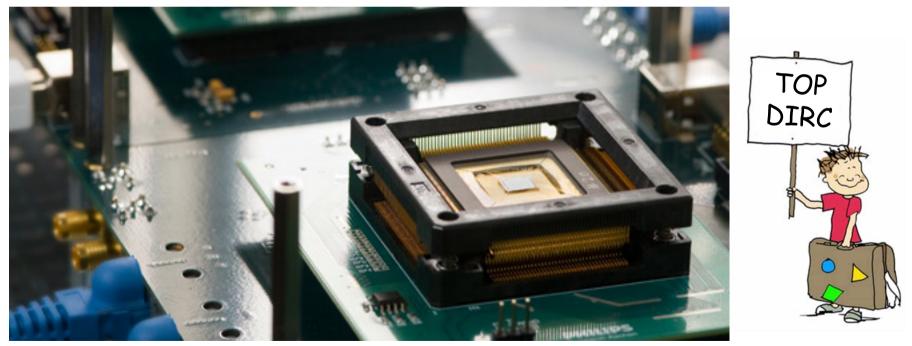

- Combine time-of-propagation design with small light guides for angular measurement (3D-TOP)
 - light guides possibly made from pressed glass


M. Düren, Groningen, Aug/Sept 2010

- Produce 4 identical optically (and mechanically) decoupled quadrants:
 - significant cost saving
 - risk reduction (one spare)
 - large simplification in handling (~1 m size)
 - moderate performance reduction
 - additional complexity of reconstruction software DIRC

TOP

- Use G-APDs (Philips digital Si-PMTs): The only available photon detectors that stand the high light yields and have adequate time resolution. Open points:
 - dark rate (cooling; attached to endcap calorimeter?)
 - radiation hardness (They are at rim behind the barrel calorimeter)
 - costs, timelines

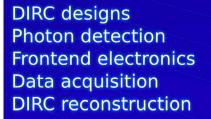
M. Düren, Groningen, Aug/Sept 2010

	Mos	st pessimistic time lines														
#		Funding periods BMBF	20	09		20	010			20	011	•	20	12	20	12
			Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
		ton detectors														
		MCPs do to stand the light yields											1			
		PMTs do not stand the magnetic fields														
		Diamond PMTs do not work properly														
		G-APDs have a too high dark rate														
							TOD	ÂY								

ľ	Most optimistic time lines for TOP-DIRC					10												10		<u> </u>	<u> </u>	ЦЦ	_	
_	Funding periods BMBF	20	09	<u> </u>		10	<u>.</u>	<u> </u>	20		<u>.</u>	20		20		<u>.</u>		13	10.1	<u></u>)14	<u></u>	20
+	[Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3 (<u>Q4</u>	Q1
	Offline Software																			<u> </u>				-
ť	Monte-Carlo, rekonstructions algorithms; analysis tools (Oliver, Peter)																			┼──	<u> </u>	┼──┼		
+			<u> </u>		1				_	1	- 1									<u> </u>	<u> </u>	┼──┼		
Г	Design optimization																			<u> </u>	<u> </u>	┼──┼		+
Ť	Design optimization (3D: TOP with small LG; indepentent quadrants, Philips G-APDs)																			+		<u>├</u> ──┼		+
+	Design decision (concept; details)		i – –							I 4	★ 1									<u> </u>		<u> </u>		
											×		×							<u> </u>	<u> </u>	┼──┼		
F	Radiator Plate																							1
Ť	specifications (iteration)					\mathbf{x}	(L												+	+	+ +		+
-	Order 5=1+4 fused silica plates; production + polishing (one company?)							- 1						*										
+	first test guadrand delivered														1 1		i		1		1	— – – –		1
+																		A				++		
1	Lightguides																				+	+ +		1
+	prototype production and test																			+		<u>├</u> ──┼		+
	Prototype by company and mass production (pressed glass?)																			+		<u>├</u> ──┼		+
-	Mass production																			<u> </u>		<u> </u>		-
+															1 1					+		<u>├</u> ──┼		+
Г	Dichroic mirrors																			+		<u>├</u> ──┼		+
1	optical and radiation tests																			+		<u>├</u> ──┼		+
-	dedicated prototypes by company																				+	+		
-	Mass production										<u> </u>				I I						+	+		-
+															<u> </u>					<u> </u>	<u> </u>	├──┼		1
F	Photon detectors																					++		1
Ť	Tests with G-APDs																			1	1			1
+	Philips can build the desired G-APDs?												??							+		<u>├</u> ──┼		+
+	order and production												•••	+					-		<u> </u>	<u>├</u> ──┼		+
	alternative options: MCP, diamond PMT, and others												22	<u> </u>			1	1	1	T		<u>├</u> ──┼		
+												-										++		1
F	Front end electronics; digitization																			+		<u>├</u> ──┼		+
Ť	(on-chip digitization) just connectors and "merging" has to be designed																			+		<u>├</u> ──┼		<u> </u>
+															1					<u> </u>	<u> </u>	├──┼		<u> </u>
TF	Prototypes																					++		
ľ	Various radiators and photodetecors in testbeams			÷ .		~ ~	- +													+		<u>├</u> ──┼		+
	one glas quadrant in Wasa or external testbeam (production and test)								_		_	_								+		<u>├</u> ──┼		+
	1st fused silica quadrant assembly and ready for test beam or test implementation									<u>г</u>									-	<u> </u>		<u>├</u> ──┼		
+	recruesed since quadrant assembly and ready for test beam or test implementation																			1	<u> </u>	+		+
Г	DAQ and online software																				+	+ +		1
╧	rate reduction, intelligent online analysis																		-					<u> </u>
+																			1	1				1
N	Mechanics																			\vdash	\vdash	+		+
T	principle design (frames, stability, cabling, cooling)																1	1	1	1				1
	detailed design		<u> </u>		-		L				-				1 1		L			+	+	++		+

M. Düren, Groningen, Aug/Sept 2010

Most optimistic time lines for TOP-DIRC												
Funding periods BMBF	20	009		20	10			20	011	1	20	12
		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
Offline Software												
Monte-Carlo, rekonstructions algorithms; analysis tools (Oliver, Peter)		-					-	-			i	
Design optimization							L	<u> </u>		I		
Design optimization (3D: TOP with small LG; indepentent quadrants, Philips G-APDs)		1	1	1	-	-	r	1	1		1	
Design decision (concept; details)										\mathbf{X}		\mathbf{X}
Radiator Plate												
specifications (iteration)					\star							
Order 5=1+4 fused silica plates; production + polishing (one company?)					X		1	-				<u> </u>
first test quadrand delivered												<u> </u>
		+							+			<u> </u>
Lightguides		+						-	-			
prototype production and test		+							-			
Prototype by company and mass production (pressed glass?)							1	1		1		
Mass production												
Dichroic mirrors							1		1			
optical and radiation tests												
dedicated prototypes by company												
Mass production									ľ			
Photon detectors												
Tests with G-APDs												
Philips can build the desired G-APDs?			1				-	1		1		??
order and production										1		
alternative options: MCP, diamond PMT, and others								1				??
		1					1		1			
Front end electronics; digitization												
(on-chip digitization) just connectors and "merging" has to be designed												
			1				1					
Prototypes							1					
Various radiators and photodetecors in testbeams	7		*		7 7							
one glas quadrant in Wasa or external testbeam (production and test)		Γ	Í	ΓĆ								
1st fused silica quadrant assembly and ready for test beam or test implementation												
DAQ and online software												
rate reduction, intelligent online analysis												
Mechanics												
principle design (frames, stability, cabling, cooling)												
detailed design												


Most optimistic time lines for TOP-DIRC		10			112	I			14	I		
Funding periods BMBF 2009 2010 2001 2001 2001)12	0.4		13		0.4)14)15
	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
Offline Software												_
Monte-Carlo, rekonstructions algorithms; analysis tools (Oliver, Peter)												-
	-											_
Design optimization												_
Design optimization (3D: TOP with small LG; indepentent quadrants, Philips G-APDs)												
Design decision (concept; details)	<u> </u>											
	_											
Radiator Plate												
specifications (iteration)												
Order 5=1+4 fused silica plates; production + polishing (one company?)			;	;		-	-					
first test quadrand delivered	<u> </u>				\star							
	<u> </u>											
ightguides	<u> </u>											
prototype production and test												
Prototype by company and mass production (pressed glass?)												
Mass production												
Dichroic mirrors												
optical and radiation tests												
dedicated prototypes by company												
Mass production												
Photon detectors												
Tests with G-APDs												
Philips can build the desired G-APDs?												
order and production												
alternative options: MCP, diamond PMT, and others				1	1	1	1	1				
	1											
ront end electronics; digitization												Ì
(on-chip digitization) just connectors and "merging" has to be designed												
Prototypes												
Various radiators and photodetecors in testbeams												
one glas quadrant in Wasa or external testbeam (production and test)	<u> </u>											
1st fused silica quadrant assembly and ready for test beam or test implementation										-		
										-		
DAQ and online software												┢──
rate reduction, intelligent online analysis	 		L	L	L	I	I	1	L			-
	<u> </u>		I	I	I	1	1		T	Г		–
l	<u> </u>											\vdash
Aechanics	<u> </u>						<u> </u>			<u> </u>		_
principle design (frames, stability, cabling, cooling)	-	1	I	I	I	1						<u> </u>
detailed design			_									

С

Workshop on Fast Cherenkov Detectors

Photon detection, DIRC design and DAQ

May 11-13, 2009 - Justus-Liebig-Universität Giessen www.physik.uni-giessen.de/dueren/workshop.htm

European Graduate School Complex Systems of Hadrons and Nuclei

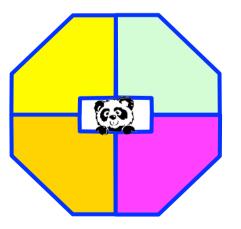
The workshop will focus on the design of fast DIRC Cherenkov detectors as they are currently being planned for the PANDA experiment at FAIR. Common issues like the fast data acquisition of arrival times and photon amplitudes make the subject interesting for other projects in PANDA and also for ATLAS, WASA and other experiments. We will try to make the workshop effective and inspiring as well for experts as for students.

JUSTUS-LIEBIG-

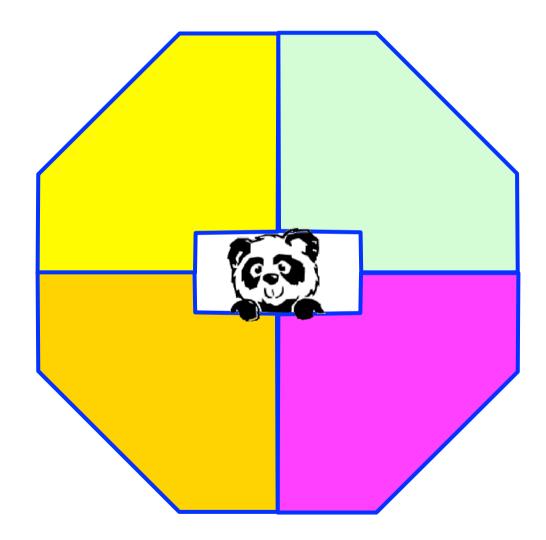
GIESSEN

Local organizers:

Anatoli Astvatsatourov, Michael Düren, Klaus Föhl, Avetik Hayrapetyan, Wolfgang Kühn, Sören Lange, Volker Metag, Rainer Novotny, Wolfgang Plaß Christof Scheidenberger, Hasko Stenzel


Sponsored by HIC for FAIR (Helmholtz International Center for FAIR) and DFG (European Graduate School)

DIRC2011


Workshop planned for June 6-8, 2011 in Gießen/Rauischholzhausen

www.uni-giessen.de/cms/dueren

Proposals for invited speakers are welcome

M. Düren, Groningen, Aug/Sept 2010 8

M. Düren, Groningen, Aug/Sept 2010