

A cryopump for PANDA

Christian Mannweiler Institut für Kernphysik WWU

24.6.2020

Institut für Kernphysik

wissen.leben

Motivation

- Expected residual gas density in PANDA poses a challenge on multiple fronts
 - For example: for the luminosity detector, beam lifetime, vertex point reconstruction
- Multipronged approach:
 - Optimisation of IP (D. Klostermann)
 - Cooling of target beam pipe (D. Klostermann)
 - Cryopump for (anti-)proton beam line

Position of the cryopump

Cooling hardware and analysis software

- Coldhead: Leybold Coolpower 10 MD
 - ≈ 30K at warm stage
 - ≈ 10K at cold stage

• Temperature simulations performed with Autodesk CFD 2019

• Vacuum simulations performed with Molflow+

Example of an inserted cryopump

Different cryopump geometries

tube cryopump

aperture cryopump

Different thermal shield geometries

Gap shield

Hole shield

Aperture cryopump with a hole shield

- Length: ≈ 40 cm
- Pumping surface: 3527 cm²
- Regeneration interval: ≈ 2.4 months
- Minimal temperature: 11K
- Maximum temperature: 13K

Aperture cryopump with a hole shield

- Length: ≈ 60 cm
- Pumping surface: 4863 cm²
- Regeneration interval: \approx 3.3 months
- Minimal temperature: 11K
- Maximum temperature: 14K

Aperture cryopump with a gap shield

- Length: ≈ 60 cm
- Pumping surface: 4863 cm²
- Regeneration interval: \approx 3.3 months
- Minimal temperature: 12K
- Maximum temperature: 15K

Tube cryopump with a hole shield

- Length: ≈ 40 cm
- Pumping surface: 2332 cm²
- Regeneration interval: \approx 1.6 months
- Minimal temperature: 11K
- Maximum temperature: 14K

Tube cryopump with a hole shield

- Length: ≈ 60 cm
- Pumping surface: 3491 cm²
- Regeneration interval: \approx 2.4 months
- Minimal temperature: 12K
- Maximum temperature: 17K

Tube cryopump with a gap shield

- Length: ≈ 60 cm
- Pumping surface: 3491 cm²
- Regeneration interval: \approx 2.4 months
- Minimal temperature: 12K
- Maximum temperature: 17K

Conclusion

• Optimal combination concerning regeneration interval and temperature:

hole shield

Comparison of vacuum results for aperture geometry

Summary and outlook

- Minimal temperatures are achieved by the aperture geometry in conjunction with a hole shield
- Residual gas density is improved by over 30%, with only a weak dependency on the exact geometry of the cryopump
- Regeneration intervals are only rough estimates. The exact adsorption capacity of the activated carbon needs to be determined
- Based on these results, a prototype cryopump will be constructed

Thank you for your attention! Are there any questions?

wissen.leben

Institut für Kernphysik