

Charmonium (-like) Spectroscopy (CC/CCE) and Light Meson Spectroscopy (LM) -- Communications

Frank Nerling

GU Frankfurt & GSI Darmstadt

Outline

- Some communications
 - Agenda
 - Publications/release
- Impact of new LHCb result on XYZ at PANDA

Agenda

Charmonium and Exotics Session at CM 20/2

Wednesday Jun 24, 2020, 11:00 AM → 12:30 PM Europe/Berlin

Online

11:00 AM → 11:10 AM **Communications**

Speaker: Frank Nerling (GSI Helmholtzzentrum für Schwerionenforschung GmbH(GSI))

11:10 AM → 11:40 AM Feasibility Study of Zc(3900) with PANDA

Speaker: Ali Yilmaz (Giresun University(GiUn))

11:35 AM → 12:00 PM Plans and ideas for charmonium spectroscopy with PANDA

Speaker: Sean Dobbs (Florida State University(FSU))

Remarks:

- Absent with excuse: Aron Kripko, Iman Keshk
- Russian colleagues difficult to catch for online-only meetings
- Special "guest": Sean becomes slowly an active member welcome!

Publication / release issues

Phase One Paper

- Drafting finally completed
 - CCE: Xscan P1 → delivered from our side (March 2018)
 - Input by a TAG member was forgotten ... (PhysCom, March 2020)
 - New LHCb result published on May 28th
 - Need for revisiting the CCE Chapter
 - I was finally asked to add and adopt it, also now iterated with CH
 - => CWR expected soon, finally

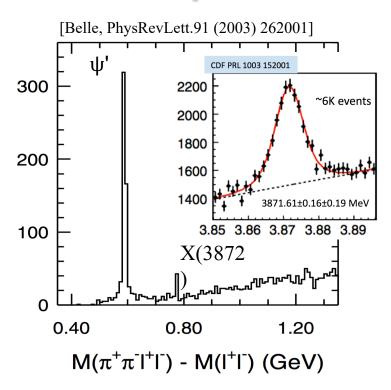
Dedicated PWA paper (LM), Iman Keshk et al.

- PWA of $p\bar{p} \rightarrow \phi \phi$ (energy scan data)
 - Rather progressed analysis
 - Frequent status reports
 - Still addressing last comments/input received
 - Next (final) presentation expected in PWG soon
 - => Release note draft to be completed & circulated within PWG

JOHANN WOLFGANG & GOETHE
UNIVERSITÄT
FRANKFIRT AM MAIN

arXiv:2005.13419v2

CERN-EP-2020-086 LHCb-PAPER-2020-008 May 27, 2020


Study of the lineshape of the $\chi_{c1}(3872)$ state

LHCb collaboration[†]

Experimental Review of the X(3872)

- Mass: $m(X) m(\bar{D}^{*0}) m(D^{0}) =$ = -0.12 ± 0.19 MeV/c²
- Width: Upper limit by Belle
 - $ightharpoonup \Gamma_{X(3872)} < 1.2 \text{ MeV (90% c.l., 2011)}$

- The first unexpected states
 - and the most intriguing one
- First observed by Belle in 2003
 - \rightarrow X(3872) \rightarrow J/ ψ $\pi\pi$
 - very narrow state with J^{P C} = 1⁺⁺
- Both, Belle & BaBar report signal in
 - > $X(3872) \rightarrow \bar{D}^0 D^{*0}$ ($D^0 D^0 \pi^0$ and $D^0 D^0 \gamma$)

"binding energy" of -0.12+-0.19 MeV?

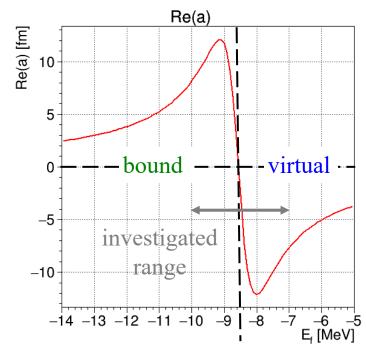
Intriguing Analogon

1.8 GeV
2 GeV
PION

PION

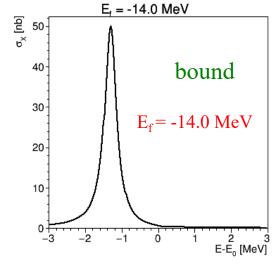
For clarification: Precision measurement of $\Gamma_{X(3872)}$ in the sub-MeV range needed!

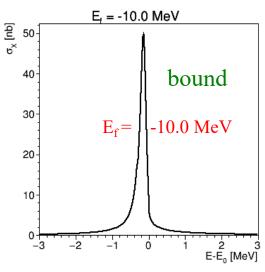
Line shapes for different E_f

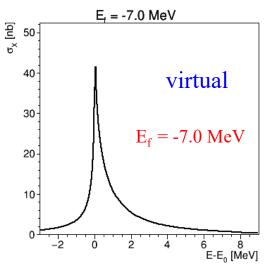


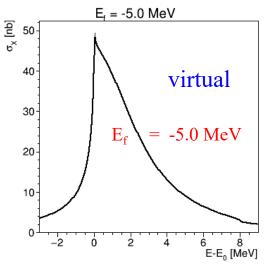
Scattering length D⁰D⁰*:

$$a = -\frac{\sqrt{2\mu_2\delta} + 2E_f/g + i\Gamma(0)/g}{(\sqrt{2\mu_2\delta} + 2E_f/g)^2 + \Gamma(0)^2/g^2}$$

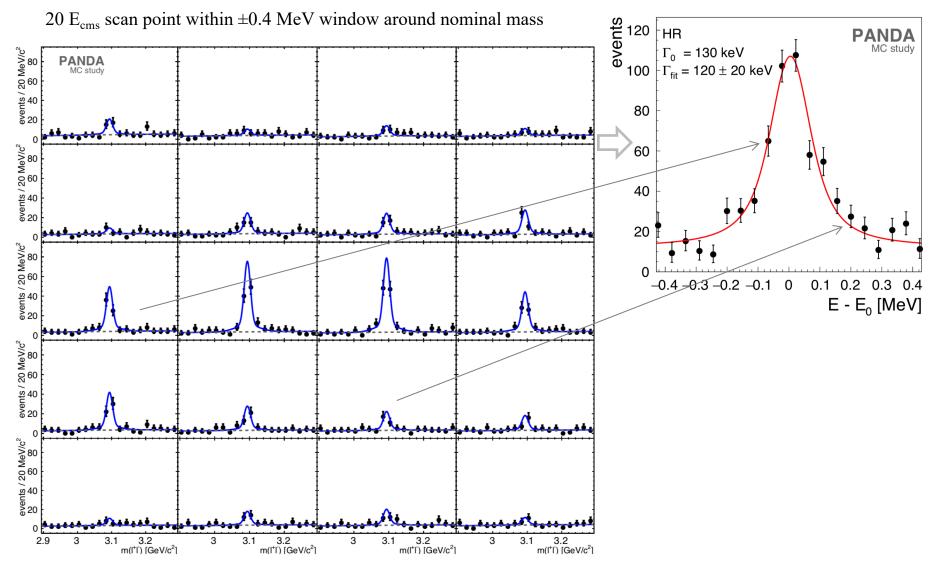

Re(a) > 0: bound state


Re(a) < 0: virtual state



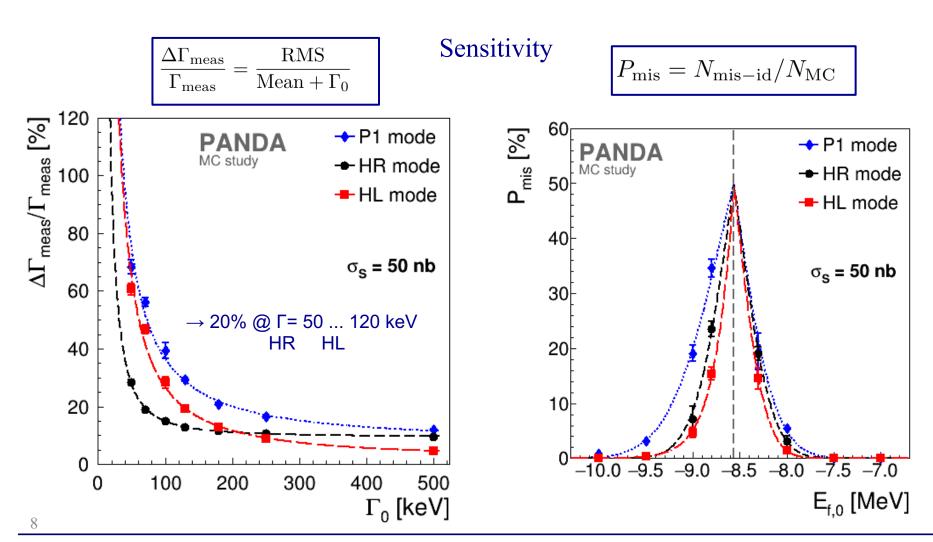

 $E_{f,th} = -8.56 \text{ MeV}$

Examples always scaled to same f_{max}



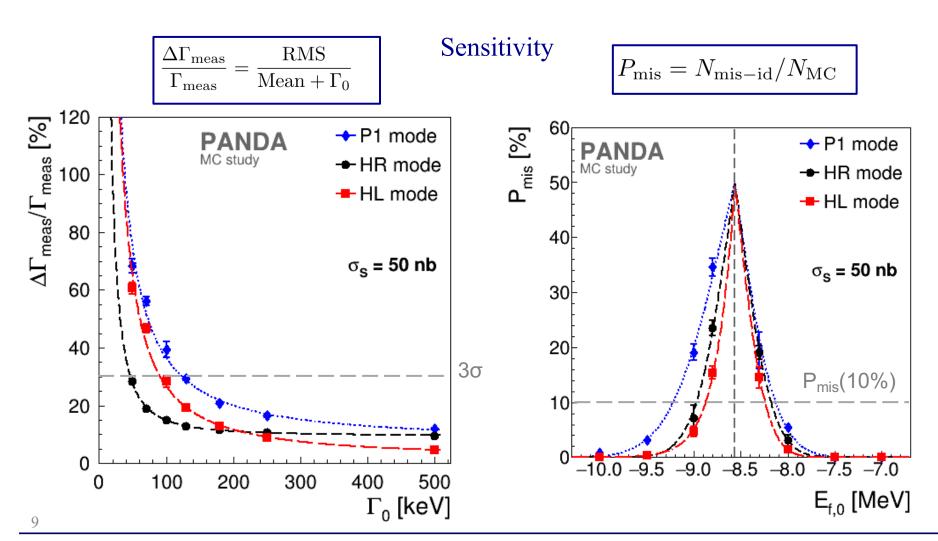
(with f_{ρ} =0.00047, f_{ω} =0.00271, g=0.137, Γ_{0} =1.0 MeV)

Scan Procedure Principle (Example)



Sensitivities Breit-Wigner Γ (40 x 2d)

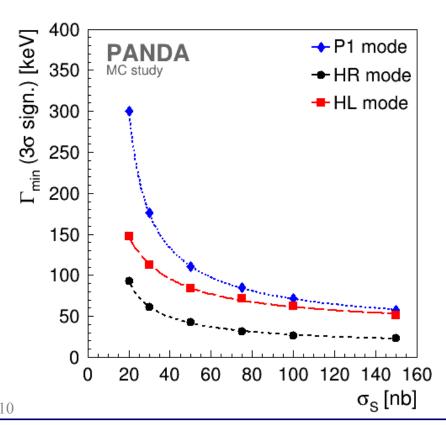
- Show relative error rms_{fit}/ $\overline{\Gamma}_{fit}$ in [%]
- How well can virtual vs bound state be distinguished? → integrate mismatch region

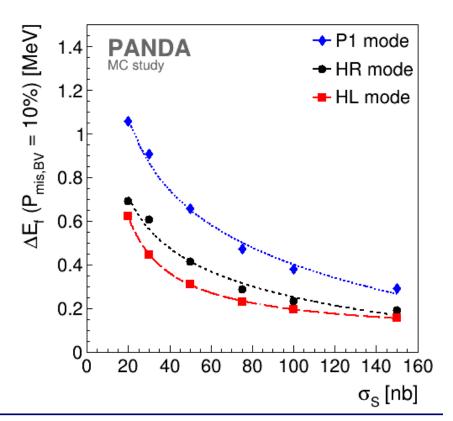


Sensitivities Breit-Wigner Γ (40 x 2d)

- Show relative error rms_{fit}/Γ̄_{fit} in [%]
- How well can virtual vs bound state be distinguished? → integrate mismatch region

Sensitivities Breit-Wigner Γ (40 x 2d)




- Show relative error rms_{fit}/ $\overline{\Gamma}_{fit}$ in [%]
- How well can virtual vs bound state be distinguished? → integrate mismatch region

$$\frac{\Delta\Gamma_{\rm meas}}{\Gamma_{\rm meas}} = \frac{\rm RMS}{{\rm Mean} + \Gamma_0}$$

Sensitivity

$$P_{\rm mis} = N_{\rm mis-id}/N_{\rm MC}$$

JOHANN WOLFGANG COETHE
UNIVERSITÄT
ERANKELIRT AM MAIN

arXiv:2005.13419v2

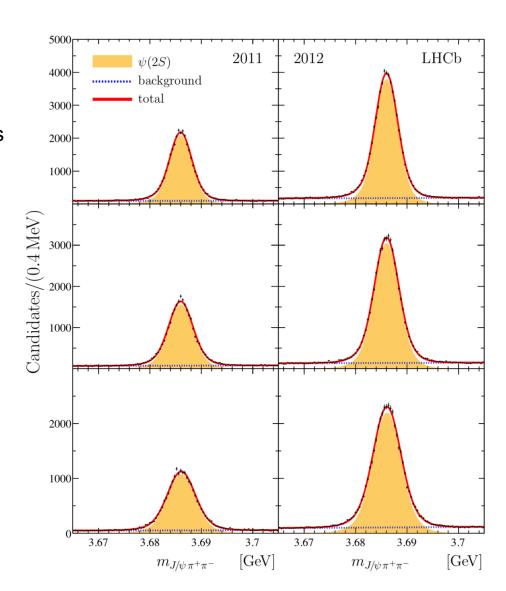
• Two data sets integrated luminosity of 3fb⁻¹

- pp collisions at 7 and 8 TeV)
- integrated luminosity of 3fb⁻¹
- \triangleright Candidate $\chi_{c1}(3872)$ from b-hadron decays
 - J/ψπ+π− decay mode

Measurement

- Mass relative to psi(2S)
 - $\Delta m = 185.588 \pm 0.067 \pm 0.068 \text{ MeV}$
- Width
 - Γ_{BW} = 1.39 $\pm 0.24 \pm 0.10 \text{ MeV}$

Line shape study


- Flatt e- inspired lineshape
 - two poles for the $\chi_{c1}(3872)$ in the complex energy plane found
 - the dominant pole compatible with a quasi-bound D⁰D*0 state
 - but a quasi-virtual state still allowed at 2σ level

JOHANN WOLFGANG & GOETHE
UNIVERSITÄT
ERANKEIRT AM MAIN

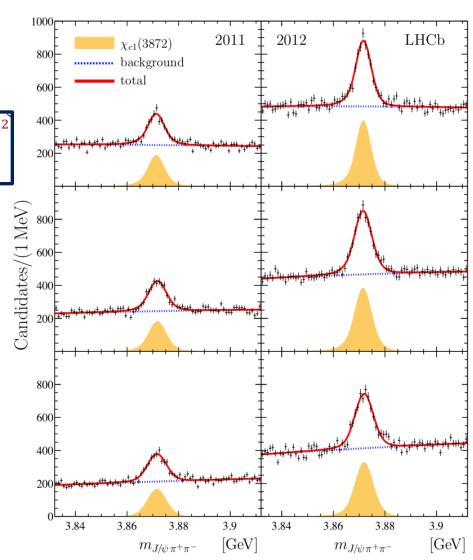
arXiv:2005.13419v2

- LHCb 2011/12 data, 3 fb-1
 - > pp collisions at 7 and 8 TeV
 - > X(3872) candidates in b-hadron decays
 - ► J/ψ ππ decay mode
- Selection
 - $ightharpoonup J/\psi$ mass constraint, 3 p_{$\pi\pi$} bins
 - considering resolution dependency
- Observed mass spectra
 - Natural line shape convolved with detector resolution (~ 3 MeV/c²)
 - Resolution model using $\psi(2S)$

JOHANN WOLFGANG TOFTHE UNIVERSITÄT ERANKEIJET AM MAIN

arXiv:2005.13419v2

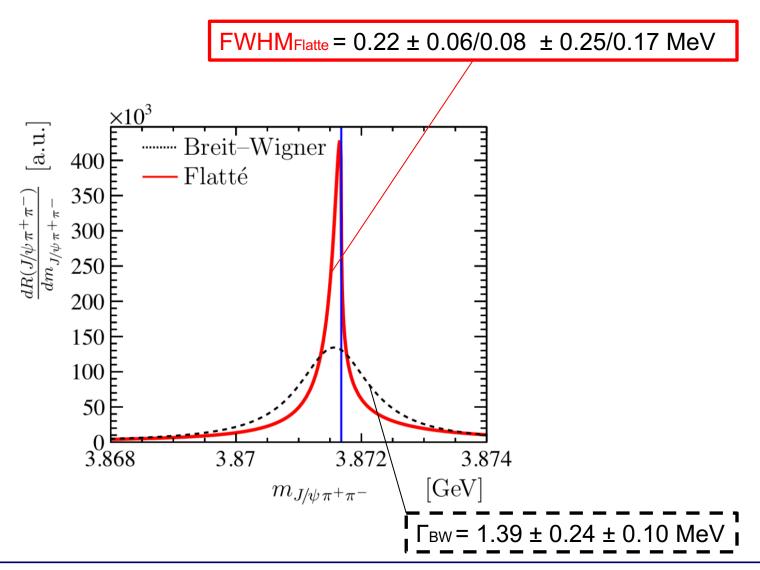
- Relativistic Breit-Wigner fctn. (S-wave),
 - $\rightarrow \Delta m = m(X(3872) \psi(2S))$ used


$$\checkmark M_{\rm BW} = 3871.695 \pm 0.067 \pm 0.068 \pm 0.010 \,\text{MeV}/c^2$$

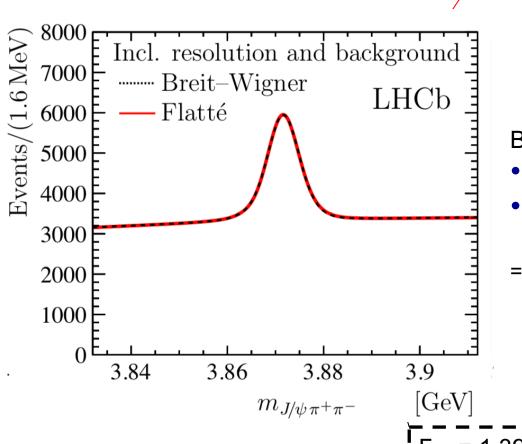
$$\checkmark \Gamma_{\text{BW}} = 1.39 \pm 0.24 \pm 0.10 \text{ MeV}/c^2$$

2nd model:

- Flatte-like line shape
 - ➤ 2 resonance poles, one preferred with FWHM = 220 keV


Mode [MeV]	Mean [MeV]	FWHM [MeV]
$3871.69^{+0.00+0.05}_{-0.04-0.13}$	$3871.66^{+0.07+0.11}_{-0.06-0.13}$	$0.22^{+0.06+0.25}_{-0.08-0.17}$

arXiv:2005.13419v2

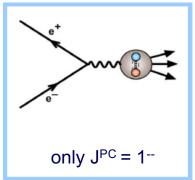


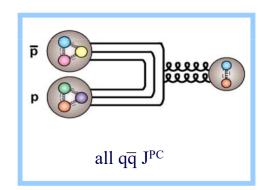
arXiv:2005.13419v2

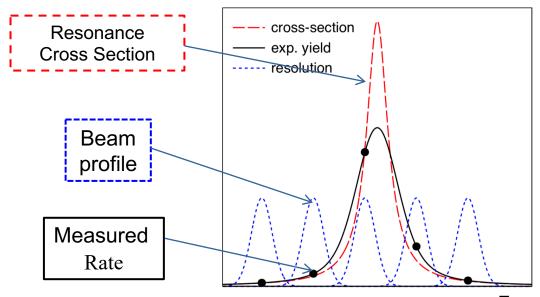
FWHM_{Flatte} = 0.22 ± 0.06/0.08 ± 0.25/0.17 MeV

Both line shape models

- Relativistic BW fctn
- Flatte-like line shape
- => Compatibel with LHCb
 Data -- same propability



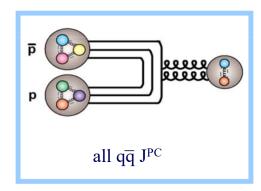

Some Advantages of Anti-Protons

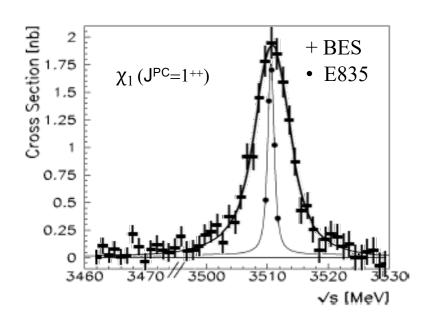

- Access to all fermion-antifermion quantum numbers (not in e+e-)
- Access to states of high spin J

Formation:

 Precise mass resolution in formation reactions

Some Advantages of Anti-Protons


- Access to all fermion-antifermion quantum numbers (not in e⁺e⁻)
- Access to states of high spin J


 Precise mass resolution in formation reactions

E760/835@Fermilab ≈ 240 keV PANDA@FAIR ≈ 50 keV

Formation:

Ablikim et al., Phys. Rev. D71 (2005) 092002: *BES (IHEP)*: 3510.3 ± 0.2 MeV/c²

Andreotti et al., Nucl. Phys. B717 (2005) 34: E835 (Fermilab): $3510.641 \pm 0.074 \text{ MeV/c}^2$

arXiv:1705.00141v2 [hep-ph]

the example of the X(3872). This resonances with $J^{PC}=1^{++}$ can be formed directly in $\bar{p}p$ annihilation. It has a narrow natural width, for which mostly a decade after the discovery merely an upper limit of 1.2 MeV (at 90% C.L.) was provided [158]. A new measurement just recently provided as preprint shows that the LHCb data are compatible (at equal probability) with an absolute Breit-Wigner decay width of $\Gamma=1.39\pm0.24\pm0.10$ MeV for the X(3872) as well as with a Flatté-like line shape model, in which the state is described by a resonance pole with a Full-Width-at-Half-Maximum of about 220 keV [159]. This experimental outcome demonstrates and emphasises the need for precision line shape measurements with excellent energy and mass resolution that is significantly better than the typical detector resolution of a few MeV. Only with an experiment such as PANDA/HESR, the shape of resonance cross sections can directly and thus model-independently be measured.

The details of the corresponding PANDA feasibility study can be found in Ref. [160]. Here, we focus on the outcome of these studies with the conditions expected for Phase One. This implies that

Summary

- LHCb definitely a serious competitor ... (nothing new)
 - Huge statistics, excellent resolution (B decays)
- Breit-Wigner width measurement
 - ightharpoonup LHCb: 1.4 MeV with 20% rel error (NB: sub-MeV within $2\sigma -> 900$ keV)
 - > PANDA: order 1% for 1.4 MeV (also for 900 keV)
 - ➤ Anyhow X(3872) acts as kind of a benchmark channel
- Flatte like line shape model
 - Also a FWHM = 220 keV compatible with LHCb data (same probability)
 - Underlines need for independent measurement, and direct measurement of the line shape with high resolution

=> PANDA/HESR

.... is still unique in precision line shape measurements