

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

Physics Motivation

$$par{p} o \gamma M$$
 at large Mandelstamm variables $\, s, -t, -u \gg \Lambda^2$

process amplitudes factorizes:

Theoretical work and possible channels

Theoretical work for baryon-antibaryon GDAs:

- P. Kroll, A. Schäfer, The process $p \overline{p} \rightarrow \gamma \pi^0$ within the handbag approach, The European Physical Journal A 26, 89-98 (2005)
- P. Kroll, A. Schäfer, Probing moments of baryon-antibaryon generalized parton distributions at BELLE and FAIR, The European Physical Journal A 50, 1 (2014)

possible channels:
$$p \ \overline{p} \rightarrow \gamma \ \gamma$$
 $p \ \overline{p} \rightarrow \gamma \ \pi^0$ $p \ \overline{p} \rightarrow \gamma \ \eta$ $p \ \overline{p} \rightarrow \gamma \ \rho$ $p \ \overline{p} \rightarrow \gamma \ \omega$ $p \ \overline{p} \rightarrow \gamma \ \eta$ ` $p \ \overline{p} \rightarrow \gamma \ \phi$ $p \ \overline{p} \rightarrow \gamma \ J / \psi$ + other charmonium states

Phenomenology

P. Kroll, A. Schäfer, The European Physical Journal A 50, 1 (2014)

$$\frac{d\sigma/dt(p\bar{p}\to\gamma\eta)}{d\sigma/dt(p\bar{p}\to\gamma\pi^{0})} = \cos^{2}\Phi_{P} \Big[\frac{f_{q}\langle 1/\tau\rangle_{\eta_{q}}}{f_{\pi}\langle 1/\tau\rangle_{\pi}}\frac{e_{u}+e_{d}\rho_{d}}{e_{u}-e_{d}\rho_{d}}\Big]^{2} |1-\kappa_{P}\tan\Phi_{P}|^{2}$$
$$\frac{d\sigma/dt(p\bar{p}\to\gamma\eta')}{d\sigma/dt(p\bar{p}\to\gamma\eta)} = \tan^{2}\Phi_{P} \left|\frac{1+\kappa_{P}\cot\Phi_{P}}{1-\kappa_{P}\tan\Phi_{P}}\right|^{2} \quad \kappa_{P} = \sqrt{2}\frac{f_{s}\langle 1/\tau\rangle_{\eta_{s}}}{f_{q}\langle 1/\tau\rangle_{\eta_{q}}}\frac{e_{s}\rho_{s}}{e_{u}+e_{d}\rho_{d}}$$

Annihilation form factor:	$R_i^{\gamma}(p\bar{p}) = e_u^2 F_i^{\nu}$	$^{\iota} + e_d^2 F_i^{\ d} + e_s^2 F_i^{\ s}$
	$F_i^{d} = \rho_d F_i^{u}$	$F_i^{s} = \rho_s F_i^{u}$

- → Cross section ratios are independent on the scattering angle
- → The annihilation form factors can be estimated by a fit to BELLE, L3 and CLEO data for the reactions $\gamma\gamma \to \Lambda\overline{\Lambda}$ and $\gamma\gamma \to \Sigma^0\overline{\Sigma}^0$

Phenomenology

- → Large error range due to the uncertainty of the available data from BELLE, L3 and CLEO
 + the included assumptions
- ➔ For a reliable extraction of the annihilation form factors and the GDAs the cs for a set of mesons has to be measured and a global fit has to be performed

Cross sections and backgrounds

- B/S π⁰ γ - B/S π⁰ π⁰

1000 -

signal: $\gamma\gamma$

The process $\gamma \gamma \rightarrow B\overline{B}$ measured at BELLE can be used together with symmetry relations to predict the cross sections of $p \ \overline{p} \rightarrow \gamma \ \gamma$

Feasibility studies

- ➔ A phase space simulation has been perfromed for a set of mesons
- ➔ Exclusive events have been selected with a 5C kinematic fit and a cut on the invariant mass of the meson
- → For each meson the background has been estimated (for equal cross section)
- \rightarrow The acceptance in $\cos(\theta)$ has been checked
- The cos(θ) dependence of the cross section has been implemented and a reconstruction study has been performed
- → Simulations have been performed at $\sqrt{s} = 2.6 \ GeV$ $\sqrt{s} = 3.4 \ GeV$ $\sqrt{s} = 4.5 \ GeV$ $p_{beam} = 2.5 \ GeV$ $p_{beam} = 5.0 \ GeV$ $p_{beam} = 10 \ GeV$
- → The following reactions have been studied: $p \ \overline{p} \rightarrow \gamma \ \gamma$ $p \ \overline{p} \rightarrow \gamma \ \pi^{0}$ $p \ \overline{p} \rightarrow \gamma \ \eta$ $p \ \overline{p} \rightarrow \rho \gamma$ $p \ \overline{p} \rightarrow \omega \gamma$ $p \ \overline{p} \rightarrow \gamma \ \phi$ $p \ \overline{p} \rightarrow \gamma \ J/\psi$

$p \ \overline{p} \to \gamma \ \gamma$

potential background:
$$p \ \overline{p} \rightarrow \gamma \ \pi^0$$
 $p \ \overline{p} \rightarrow \pi^0 \pi^0$

$p \ \overline{p} \to \gamma \ \pi^0 \to \gamma \ \gamma \ \gamma$

2.5 GeV

Stefan Diehl, JLU

13

BR ~ 99 %

$p \ \overline{p} \to \gamma \ \pi^0 \to \gamma \ \gamma \ \gamma$

$p \ \overline{p} \to \gamma \ \eta \to \gamma \ \gamma \ \gamma$

potential background:

$$p \ \overline{p} \to \pi^0 \ \eta$$

$p \ \overline{p} \to \gamma \ \eta \to \gamma \ \gamma \ \gamma$

$p \ \overline{p} \to \rho \gamma \to \pi^+ \pi^- \gamma$

BR ~ 100 %

22

stunos 1400

1200

1000

800

600[†]

400

200

0^L

10 GeV

$p \ \overline{p} \to \rho \gamma \to \pi^+ \pi^- \gamma$

potential background: $p \ \overline{p} \rightarrow \rho \pi^0$

signal to background ratio

25

signal to background ratio

$p \ \overline{p} \to \omega \gamma \to \pi^+ \pi^- \pi^0 \gamma$

potential background: *p*

$$p \ \overline{p} \to \omega \pi^0$$

 $p \ \overline{p} \to \gamma \ \phi \to \gamma \ K^+ \ K^-$

BR ~ 49 %

29

2.5 GeV

10 GeV

$p \ \overline{p} \to \gamma \ \phi \to \gamma \ K^+ \ K^-$

potential background: $p \ \overline{p}
ightarrow \pi^0 \phi$ + hadronic background

$p \ \overline{p} \to \gamma \ \phi \to \gamma \ K^+ \ K^-$

$p \ \overline{p} \rightarrow \gamma \ J / \psi \rightarrow \gamma \ e^+ \ e^-$ BR~6%

$p \ \overline{p} \rightarrow \gamma \ J / \psi \rightarrow \gamma \ e^+ \ e^-$

potential background: $p \ \overline{p} \rightarrow \pi^0 \ J / \psi$ + leptonic background

$p \ \overline{p} \to \gamma \ J / \psi \to \gamma \ e^+ \ e^-$

5 GeV

$p \ \overline{p} \rightarrow \gamma \ J / \psi \rightarrow \gamma \ e^+ \ e^-$

 $p \ \overline{p} \to \gamma \ J / \psi \to \gamma \ \mu^+ \ \mu^-$

BR ~ 6 %

$p \ \overline{p} \to \gamma \ J / \psi \to \gamma \ \mu^+ \ \mu^-$

potential background: $p \ \overline{p} \rightarrow \pi^0 \ J / \psi$ + leptonic background

$p \ \overline{p} \to \gamma \ J / \psi \to \gamma \ \mu^+ \ \mu^-$

5 GeV

Summary and Outlook

- GPDs in the space like region are currently extensively studied at experiments like CLAS12.
- The study of GDAs / time-like GPDs with PANDA can help us to get more detailed / additional insights into the 3D nucleon structure.
- First theoretical modells and predictions exist by Kroll and Schäfer.
- An initial feasability study has been done for a set of mesons.
- The results show, that GDAs can be extracted with PANDA.
- → More cuts have to be added to reduce the background.
- More detailed studies, including count rate / beamtime estimates are in progress.

The GDA program can be extended to charmonium resonances and measurements can probably be done together with the spectroscopy program.