Results of the Photonis XP85112 9002192 & 9002193 2x2 inch² MCP-PMTs

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Steffen Krauss, M. Böhm, A. Lehmann, D. Miehling

PANDA Meeting Darmstadt, June, 23, 2020

NATURWISSENSCHAFTLICHE FAKULTÄT

Photonis XP85112 9002192 (2192) & XP85112 9002193 (2193)

- 2x2 inch², 8x8 pixels, 10 µm MCP
- Comments so far:
 - tubes arrived in Erlangen: June 2nd, 2020
 - 10 µm MCP diameter
 - backplane layout like Photonis 9002150 (no pins out, left picture)
 - high collection efficiency tubes (Photonis comment, not measured yet)
 - recommended voltage divider: 1:10:1 (0.5 M Ω 5 M Ω 0.5 M Ω), but changeable up to a PC voltage of 800 V

300

400

500

600

wavelength QE in important area over 20 %, fits with Photonis datasheet, own measurements a bit lower (~ 1% absolute)

PANDA Collab. Meeting Darmstadt - June 23, 2020 - Steffen Krauss

800

700

QE vs wavelength 9002193 Pix 22_23_32_33

× [mm]
Photonis datasheet: Peak QE (300 – 400 nm): 26 %

30

20

10

0 0

 overall QE about 23 – 24 %, except small areas at the corners top left, bottom left and top right to 19 – 20 % QE

40

50

 wavelength QE in important area over 20 %, fits with Photonis datasheet, own measurements a bit lower (~ 2 % absolute)

PANDA Collab. Meeting Darmstadt – June 23, 2020 – Steffen Krauss

Compared wavelength QE with Photonis datasheet

own measurements

Photonis datasheet

Photonis illumination: 2mm spot Erlangen: 4 pixel (8 mm spot)

y [mm]

QE homogeneity compared by active area

9002193 QE pixelcut 25 90 25 25 50 20 40 15 30 10 20 10 0 20 50 10 30 40 x [mm]

- plotted QE distribution for different sensor areas (2x2, 4x4, 6x6 pixels and whole area)
- both tubes show very good homogeneity up to 6x6 pixel area
- rapid decrease at the end of QE for 2193 due to analysis or defect bins (maybe caused by dust particles at the sensor while measurement)

Gain curves Photonis 9002192 & 9002193 for pixel x5 y5

- measuring gain by 20 V steps with scope by fitting a poisson distribution the whole signal height distribution
- measured at a center pixel (x5 y5)
- datasheet: 10⁶ gain @ 1980 V
- measured: 10⁶ gain @ 1980 V
- maximum operating voltage: 2200 V

- datasheet: 10⁶ gain @ 1850 V
- measured: 10⁶ gain @ 1880 V
- maximum operating voltage: 2200 V

x projection of y-bin 61 (29.8 mm - 30.3 mm)

QE corrected Gain distribution Photonis 9002192

- Applied voltage: 1970 V
- reference position for scaling: x: 33 mm, y: 31 mm (black circle)
- maximum: 1.1×10^6 in the middle area
- towards edges gain drops to $\sim 3 \times 10^5$

QE corrected Gain distribution Photonis 9002193

- Applied voltage: 1880 V
- reference position for scaling: x: 33 mm, y: 31 mm (black circle)
- maximum: $1.1 \ge 10^6$ in the middle area
- towards edges gain drops to $\sim 4 \ge 10^5$

plotted gain distribution for different sensor areas (2x2, 4x4, 6x6 pixels and whole area)

x axis: top \rightarrow active area [%], bottom \rightarrow area[mm]

- y axis: left \rightarrow normalised gain, right \rightarrow absolute
- scaling value: $1 \cdot 10^6$
- both tubes have average gain distribution

PANDA Collab. Meeting Darmstadt – June 23, 2020 – Steffen Krauss

PANDA Collab. Meeting Darmstadt - June 23, 2020 - Steffen Krauss

Photonis 9002192 & 9002193 different voltage divider

- for datasheet voltage divider (0.5 : 5 : 0.5) [MΩ] time resolution increases, so taking measurements with different dividers → changing PC voltage
- for scope time resolution 4 dividers used (0.5 2:5:0.5)
- for DiRICH measurement two divider (0.5 : 5 : 0.5 & 2 : 5 : 0.5) and threshold of about 25% of single photon peak (~ 2 3 mV), same threshold for both configurations, so 2 : 5 : 0.5 threshold may be a bit lower due to higher signals
 9002192

Divider [MΩ]	voltage (PC-MCP) [V]	used gain	Divider [MΩ]	voltage (PC-MCP) [V]	used gain
0.5 : 5 : 0.5	182	$9.5 \cdot 10^{5}$	0.5 : 5 : 0.5	173	$9.3 \cdot 10^5$
1:5:0.5	364	$1.5 \cdot 10^{6}$	1:5:0.5	346	$1.5 \cdot 10^{6}$
1.5 : 5 : 0.5	547	$1.5 \cdot 10^{6}$	1.5 : 5 : 0.5	519	$1.65 \cdot 10^{6}$
2:5:0.5	729	$1.45 \cdot 10^{6}$	2:5:0.5	692	$1.4 \cdot 10^{6}$

Time resolution Photonis 9002192, pixel x5 y5 (scope)

- RMS time resolution displayed for -0.5 ns to 2 ns range
- increasing of PC voltage improves RMS of a factor up to 2.4

Time resolution Photonis 9002193, pixel x5 y5 (scope)

- RMS time resolution displayed for -0.5 ns to 2 ns range
- increasing of PC voltage improves RMS of a factor up to 2.6
- ➢ Both tubes: with increasing PC voltage recoil peak moves into main signal peak → better RMS & σ

FRIEdRICH-ALEXANDER FOR ASTROPARTICLE PHYSICS

Compared timeresolution with Photonis measurements

PC - MCP [V]	σ [ps]	RMS 1ns	RMS 2ns
182	41	225	269
364	30	131	168
547	27	105	140
729	26	84	109

PK, V	Peak Time Resolution (σ), ps	RMS (<1ns), ps	RMS (<2ns), ps	
200	34	199	265	
400	29	118	178	
600	28	90	123	
800	25	75	100	

9002192, measured data, 9002193

PC - MCP [V]	σ [ps]	RMS 1ns	RMS 2ns
173	42	237	290
346	31	143	175
519	27	103	131
692	27	85	109

Photonis measurements

PK, V	Peak Time Resolution (ơ), ps	RMS (<1ns), ps	RMS (<2ns), ps
200	40	207	264
400	25	125	180
800	25	76	96

PANDA Collab. Meeting Darmstadt - June 23, 2020 - Steffen Krauss

Photonis 9002192 & 9002193 RMS resolution (DiRICH)

0.5 : 5 : 0.5 divider

RMS timeresolution, timewalk corrected, 9002192

RMS timeresolution, timewalk corrected, 9002193

2:5:0.5 divider RMS timeresolution, timewalk corrected, 9002192

250 y-pixel Timres per pixel [ps] 8-246 226 226 240 221 221 217 274 240 173 202 7 206 172 219 217 230 220 181 205 177 172 173 6 207 172 210 5 221 175 173 175 175 170 169 226 200 4 225 172 174 177 172 169 229 190 222 3 225 176 174 177 175 172 180 170 2 225 172 172 171 171 225 169 160 220 227 232 237 233 264 1-245 214 150 8 1 3 Δ

x-pixel

- after taking the DiRICH time resolution (~ 90 ps) into account → comparable results of RMS resolutions
- goal → better DiRICH resolution of 20 – 30 ps (more information → ask Merlin)
- mean of inner 6x6 pixels:
 - 0.5 : 5 : 0.5, 9002192:
 - ➢ 349 ps
 - 2:5:0.5,9002192:
 - ➢ 170 ps
 - 0.5 : 5 : 0.5, 9002193:
 - ➢ 355 ps
 - 2:5:0.5,9002192:
 - ➢ 178 ps

Photonis 9002192 & 9002193 darkcount distribution (DiRICH)

- mean of inner 6x6 pixels (per pixel):
 - 0.5 : 5 : 0.5, 9002192:
 - ▶ 17 Hz
 - 2:5:0.5,9002192:
 - ≻ 33 Hz
 - 0.5 : 5 : 0.5, 9002193:
 - ≻ 47 Hz
 - 2 : 5 : 0.5, 9002192:
 - ≻ 51 Hz
- top pixel row higher darkcount rate than rest of tube
- not clear, if property of tube or caused by measurement environment

PANDA Collab. Meeting Darmstadt – June 23, 2020 – Steffen Krauss

x-pixel

Photonis 9002192 & 9002193 afterpulsing (DiRICH)

2:5:0.5 divider

0.5 : 5 : 0.5 divider

- darkcount corrected afterpulse probability in range of 5 – 500 ns after main peak
- mean of inner 6x6 pixels (per pixel):
 - 0.5 : 5 : 0.5, 9002192:
 - ▶ 1.3 %
 - 2:5:0.5,9002192:
 - > 1.69 %
 - 0.5 : 5 : 0.5, 9002193:
 - ➢ 0.99 %
 - 2:5:0.5,9002192:
 - ➢ 0.74 %
 - afterpulse probability
 decreases by using
 higher PC-MCP voltage

PANDA Collab. Meeting Darmstadt – June 23, 2020 – Steffen Krauss

- top row: 0.5 : 5 : 0.5
- bottom row: 2 : 5 : 0.5

Photonis 9002192 crosstalk behaviour (DiRICH)

- top row: 0.5 : 5 : 0.5
- bottom row: 2 : 5 : 0.5

Photonis 9002193 crosstalk behaviour (DiRICH)

Summary

- spatial QE distributions are homogeneous over almost whole active area (~ ± 0.5 %), except corners
- gain distribution average and comparable with previous Photonis tubes
- 10⁶ gain everywhere reachable, 10⁶ gain voltage ~ 200 V (2192), 300 V (2193) below maximum appliable voltage → gain of up to 10⁷ (in maximum area) seems to be reachable
- rate stability: both tubes reach Barrel DIRC requirement but not for EDD
- required time resolution with PC voltage modification easily reachable
- darkcount rate, afterpulse probabilities and crosstalk behaviours are moderate and viable for the PANDA-DIRCs

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Summary

- missing measurements:
 - all tubes: magnetic field, collection efficiency
 - Photonis: oscillation measurements, lifetime (will start after missing measurements, except magnetic field)
 - Photek A1200116 (not official one): rate stability, oscillation measurements wavelength QE
- due to corona pandemic, physics department was in lockdown between 18th of March until end of May → no measurements were taken
- after, reduced working possible (one person per office/laboratory), but still many restrictions
- not cleared when magnetic field measurements will take place, due to forbidden FAU business travels for an indefinite period

Bundesministerium für Bildung und Forschung