

Reminder：
After more than 10 years of prototype program
－Q3 2019
－Sep 5， 2019
－Sep 2019
－March 20

Call for tenders for Fused silica bars successful Placed order for 98 bars with option for up to 8 more bars（need 96）with Nikon Corp，Japan． Production started Received shipment of first lot（5 bars）

Date		bar numer		Lot						Length		Width			Thickness			Parallelism		
Nikon QA	Received	GSI	Nikon	Material		Polis	Shin			Side 1	Side 2	End 1	Middle	End 2	End 1	Middle	End 2	Face－Face	Side－Side	
2／17／2020	3／4／2020	1	P23595－1－04	YK04317－1	1		1	1	1	1199.89	1199.89	52.91	52.92	52.91	16.95	16.94	16.94	0.07	0.30	
2／17／2020	3／4／2020	2	P23595－1－08	YK04317－1	1	12	1	1	2	1199.75	1199.74	52.78	52.78	52.78	16.95	16.95	16.95	0.05	0.08	
2／17／2020	3／4／2020	3	P23595－1－18	YK04317－1	1	12		1	1	1199.89	1199.89	52.90	52.91	52.91	16.95	16.95	16.9	0.01	0.04	
2／17／2020	3／4／2020	4	P23595－1－19	YK04317－1	1	2	1	1		1199.87	1199.87	52.92	52.91	52.92	16.95	16.95	16.95	0.05	0.37	
2／17／2020	3／4／2020	5	P23595－1－20	YK04317－1	1	11	1	1		1199.89	1199.90	52.91	52.92	52.91	16.95	16.94	16.94	0.10	0.12	

戸コп•

Visual inspection

Quality of internal bar surface（laser scanning system） Bar shape（laser and autocollimator）

戸コロのコ

－At first glance（eye，halogen light）：
－clean surfaces，no residue from cleaning or packing，very sharp corners
－At second glance（Laser scanning setup）：
－shift of beam spot when bar is scanned through laser
－At third glance（Autocollimator）
－＂perfect＂parallelism of faces
－fuzzy image for parallelism of sides
Visual inspection

Quality of internal bar surface（laser scanning system）
Bar shape（laser and autocollimator）

Faces show＂perfect＂parallelism Crosshairs overlay each other

Ends and sides show fuzzy image Values for parallelism and squareness can not be determined

戸コпロの

When the laser beam passes straight though the bar， the shape of the sides has not influence．

Any deviation of the laser spot position on the wall from the initial position provides hints regarding refractive index variations over the bulk．

The deviation can be in the x －and／or y －direction．

Laser tests - effect after internal reflections

Primary photon propagation direction in a DIRC is along the length of the bar - check if the effect is larger or similar for photons bouncing never/few times/many times between the two bar faces

- n : number of internal reflections
- The bar was scanned over its thickness from face 2 to face one
- The shift is shown relative to the spot position of each first laser entrance

Impact of effect is smaller for larger internal photon angles

[^0]
Laser scanning setup - measurements

Beam steering made our usual laser scanning measurements more complicated but not impossible.

Determined transmission probability (along long bar axis) and coefficient of total internal reflection (48 reflections)

Transmission scan examples:
$\mathrm{T} \approx 99.6 \% / 120 \mathrm{~cm}$ at 442 nm (bar 1)
$\mathrm{T} \approx 98.2 \% / 120 \mathrm{~cm}$ at 325 nm (bar 3)
Reflection coefficient examples:

$$
\begin{aligned}
& R \approx 0.9998 \text { at } 442 \mathrm{~nm}(\text { bar } 2) \\
& \mathrm{R} \approx 0.9984 \text { at } 325 \mathrm{~nm}(\text { bar } 3)
\end{aligned}
$$

Good T/R results so far, meet DIRC requirements

Steering of Laser Beam by the Bulk Material

When the laser beam passes straight though the bar, the shape of the sides has not influence.

Any deviation of the laser spot position on the wall from the initial position provides hints regarding refractive index variations over the bulk. (note that bar ends were found to be flat)

The deviation can be in the x - and/or y -direction.

Observed position shift during thickness (17mm) scan

Bulk Beam Steering (thickness scan, y deflection)

$$
\text { Transmission mode, Laser moved over thickness of } 17 \mathrm{~mm}
$$

Transmission mode, Laser moved over thickness of 17 mm
 Transmission mode, Laser moved over thickness of 17 mm

Transmission mode, Laser moved over thickness of 17mm
 Transmission mode, Laser moved over thickness of 17 mm

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Shift of Internally Reflected Laser Beam

Propagation of light inside of the bar with multiple internal reflections is the "normal" use-case in the DIRC.

The bar is moved (by the motor) through the laser beam,
the beam is reflected internally 16 times from the sides

The laser beam should remain at the same height inside the bar and exit at the same height it enters the bar.

The laser spot on the wall ought to always be at the same position.

Shift after 16 reflections from the sides at bar exit

Any shift of the laser spot is a sign of reflections from a non-flat surface
and/or steering from layers of varying refractive indices (striae).

Shift of Internally Reflected Laser Beam

"bulk steering effect" from side reflections 2-3 times larger for Nikon bars than for BaBar bar

Shift of Internally Reflected Laser Beam

Detailed scan for bar \#6, different laser entry positions No significant dependence of entry position along width Consistent result if bar is turned (end 1 -> end 2)

Observed "beam steering" results for all Nikon bars consistent with reflections from non-flat surfaces and/or steering from layers of varying refractive indices (striae) (cannot be distinguished by this method).

Shift after 16 reflections from the sides of the Nikon bar 6 at bar exit

Side Shape Deviation

Study of 17 mm side shape deviation
(initial impression was an approximate convex shape)

Simplified model: triangle approximation

Use spreadsheet with Nikon CMM measurement data (Apr 2020)
to visualize shape and calculate effective angle deviation
Example for side 1 of bar 3 near bar middle:
"sagitta" $\approx 4.8 \mu \mathrm{~m}-5.3 \mu \mathrm{~m}$
"local angle" = sagitta/distance
$\approx+0.7 \mathrm{mrad}$ at top, -0.7 mrad at bottom

- Nikon CMM example bar 3, side 1
533.7

-1.4
3.4
-1.9

Side Shape Deviation

Check of deformation using external laser reflection

Simplified model: polygonal approximation

Laser beam deflected by local surface
Record laser spot displacement Δy
for different positions along 17 mm side

Side Shape Deviation

Check of deformation using external laser reflection

Values differ for bars and positions along length (same seen in CMM data)
Qualitative agreement: convex shape with few micron sagitta (details vary due to difference in measurement location)

Side Shape Deviation

Study of laser beam deflection from the sides

A flat surface would result in a constant beam spot position across the bar side.

A slope is caused by a convex or concave surface.

The reflection measurements from all bars
(see following pages) show a slope consistent with different non-flat (convex/concave/sloped line) shapes

Side Shape Deviation

The crossed lines are consistent with

Side Shape Deviation

Measurements Nikon
at 3 mm from End2

Side1		
	1197	
z	15.5	2.2
	8.5	4.2
	1.5	4.9

Side2		
	1197	
Z	1.5	-5.1
	8.5	-5.0
	15.5	-1.5

slope

(we refer to shapes where the deviation increases across the thickness as "slope", the shape may be close to convex/concave; if the values increase, then decrease, we refer to the shape as "convex" or "concave")

The non-crossing lines are consistent with "almost straight" slopes of the side surfaces.

The following measurements (next 3 pages) show that, consistent with the Nikon CMM data,
 the first impression of only convex shaped sides surface was too simple; bar shapes deviations are more complex and vary along bar length.

Side Shape Deviation

Measurements Nikon at 3 mm from End2

Side1		
		1197
$\begin{gathered} \mathrm{z} \\ \mathrm{~mm} \end{gathered}$	15.5	1.3
	8.5	2.4
	1.5	1.2
Side2		
		1197
$\begin{gathered} \mathrm{z} \\ \mathrm{~mm} \end{gathered}$	1.5	0.0
	8.5	-0.7
	15.5	1.6

Side1		
		1197
$\begin{gathered} \mathrm{z} \\ \mathrm{~mm} \end{gathered}$	15.5	-1.7
	8.5	0.7
	1.5	3.1
Side2		
		1197
$\begin{gathered} \mathrm{z} \\ \mathrm{~mm} \end{gathered}$	1.5	-0.9
	8.5	1.1
	15.5	3.4

slope

Side Shape Deviation

Side Shape Deviation

Side Shape Deviation

side1		
	1197	
Z	15.5	2.2
	8.5	4.2
	1.5	4.9

slope
slope

slope
convex
The two flat lines of the BaBar bar measurements overlap and are consistent with flat parallel surfaces.

Summary of Bar Shape Examples from CMM

[^1]
Summary of Bar Shape Examples from CMM

GSI number	Nikon number	side 1										side 2									
1	P23595-1-04	convex	slope	slope	slope	convex	convex	concave	slope	slope	convex	concave	convex	convex	convex	convex	slope	convex	convex	convex	slope
2	P23595-1-08	concave	convex	concave	convex	convex	slope	concave	slope	concave	convex	slope	convex	slope	slope	convex	convex	slope	slope	convex	slope
3	P23595-1-18	slope	slope	slope	slope	convex	convex	slope	concave	slope	slope	slope	slope	slope	slope	convex	convex	slope	slope	convex	slope
4	P23595-1-19	slope	convex	slope	slope	concave	convex	slope	slope	convex	slope	slope	convex	slope	slope	slope	slope	slope	slope	convex	convex
5	P23595-1-20	slope	slope	convex	slope	convex	convex	slope	convex	slope	slope	slope	convex	slope	slope	convex	convex	slope	slope	convex	slope
6	P23595-1-03	slope	concave	slope	slope	convex	convex	slope	slope	convex	slope	slope	convex	convex	convex	convex	convex	slope	convex	convex	slope
7	P23595-1-05	slope	convex	slope	slope	slope	concave	slope	slope	convex	slope	slope	slope	slope	convex	convex	concave	concave	concave	convex	convex
8	P23595-1-07	slope	convex	slope	slope	convex	slope	convex	slope	convex	slope	slope	slope	convex	slope						
9	P23595-1-09	convex	convex	convex	concave	slope	convex	concave	concave	slope	slope	slope	convex	slope	slope	convex	convex	slope	slope	convex	slope
10	P23595-1-13	slope	convex	slope	slope	convex	convex	slope	slope	convex	slope	slope	convex	slope	slope	slope	slope	concave	slope	convex	convex
11	P23595-1-15	slope	convex	slope	slope	convex	convex	slope	slope	slope	slope	convex	concave	convex	slope	convex	convex	slope	slope	convex	concave
12	P23595-1-17	slope	convex	slope	convex	slope	convex	concave	slope	convex	convex	convex	convex	convex	slope	concave	slope	convex	convex	convex	convex

Illustration of the type of the side shape deviation, using the 10 CMM measurements provided across the length of the bars.

Note that the shape category changes across the length of the bar.
(Based on Nikon CMM data, shape definition as shown above;
"slope" may be curving inward or outward, may be close to concave or convex in shape)

Example of the side shape deviation
for bar 1, side 1, for 10 positions in Y

Nikon measurements：Maximal deviation of less than 7 ppm

Simulation of non－symmetric shape on DIRC performance

Nikon measurements：Maximum Sagitta around 10 mum
－QA for acceptance of the Nikon bar ongoing series of Zoom meetings with Nikon
－The Nikon CMM data and our laser measurements show combinations of convex and concave shapes and that these shapes vary across the length of the bars，not what we initially expected
－Result from Test and Simulation：
－Striae and Deformation of Sides are no reason not to accept the bars
－Those tests delayed the determination of possible subsurface damage
－Setup needs to be prepared or adapted to＂beam steering bars＂
－First results from internal reflection measurements for 442 nm are promising

Thank You

戸コп da

Simulation of the laser beam (390 nm) along the bar. The bar has 100 layers which create 10 ppm gradient of refraction index Position shift X along the bar thickness (outer bands for 3 mrad angle between laser beam and bar axis; inner for 2 mrad; upper two bands for photons with angle increasing in the direction of higher refraction index, lower two - opposite direction) :

[^0]: GSI Helmholtzzentrum für Schwerionenforschung GmbH

[^1]: Deviations from ideal bar shape shown for narrow sides, position 3 mm from End 2 (Nikon CMM data, deviation scaled by factor 1000.)

