# Towards the Detector Control System for the STS/CBM

#### Marcel Bajdel<sup>1 2</sup> Peter Zumbruch <sup>1</sup>

<sup>1</sup>GSI Helmholtz Centre for Heavy Ion Research

<sup>2</sup>Goethe University Frankfurt

#### June 23, 2020









Marcel Bajdel, Peter Zumbruch

PANDA Collaboration Meeting 2020



#### Introduction

- Overview of the Compressed Barionic Matter Experiment
- Phase-0 Experiment mCBM@SIS18
- mSTS
- Detector Control System for the mSTS
  - Insight into the DCS
  - Multi-container control system
- Final considerations
- STS's Roadmap

4 3 5 4 3 5 5 3

#### CBM at FAIR



・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

## Silicon Tracking System in the CBM experiment



- Tracking acceptance:  $2.5^o < \theta_{lab} < 25^o$
- Free streaming DAQ:  $R_{int} = 10 MHz (Au + Au)$
- · Software based event selection
- · ECAL is no longer part of the project

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回日 のなべ

#### Figure: Subsystems of the CBM experiment

Marcel Bajdel, Peter Zumbruch

PANDA Collaboration Meeting 2020

## Silicon Tracking System in the CBM experiment





Figure: View at the mCBM experiment

mCBM@SIS18 - a CBM full system test-setup for high-rate nucleus-nucleus collisions at GSI/FAIR

CBM prototype detector systems



Figure: View at the mCBM experiment

mCBM@SIS18 - a CBM full system test-setup for high-rate nucleus-nucleus collisions at GSI/FAIR

- CBM prototype detector systems
- free-streaming read-out and data transport to the mFLES



Figure: View at the mCBM experiment

mCBM@SIS18 - a CBM full system test-setup for high-rate nucleus-nucleus collisions at GSI/FAIR

- CBM prototype detector systems
- free-streaming read-out and data transport to the mFLES
- online event reconstruction and selection



#### Figure: View at the mCBM experiment

mCBM@SIS18 - a CBM full system test-setup for high-rate nucleus-nucleus collisions at GSI/FAIR

- CBM prototype detector systems
- free-streaming read-out and data transport to the mFLES
- online event reconstruction and selection

up to 10 MHz collision rate



Figure: View at the mCBM experiment

mCBM@SIS18 - a CBM full system test-setup for high-rate nucleus-nucleus collisions at GSI/FAIR

- CBM prototype detector systems
- free-streaming read-out and data transport to the mFLES
- online event reconstruction and selection
- up to 10 MHz collision rate
- first successful commissioning with beam 12/2018 and 3/2019

#### mSTS

## mSTS



#### mSTS

- 2 silicon sensors
- 4 FEBs
- 1 CROB
- 4 PT100 sensors
- Lauda Eco Cooling
- A prototype of the Detector Control System based on containers

#### Figure: The mSTS's design for the 2020 beam campaign

Marcel Bajdel, Peter Zumbruch

-



#### Figure: mSTS's DCS structure in the mCBM

Marcel Bajdel, Peter Zumbruch

PANDA Collaboration Meeting 2020

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < つ < ○</p>



Marcel Bajdel, Peter Zumbruch

PANDA Collaboration Meeting 2020



・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

#### How does it work?

All containers deployed using docker-compose tool (docker-compose.yaml)



12

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

#### How does it work?

All containers deployed using docker-compose tool (docker-compose.yaml)

In the first step Apache Kafka topics are created for the communication of alarm server, alarm logging instance and Phoebus (broker ignored)

| ika-setup:                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------|
| mage: confluentinc/cp-kafka:5.1.1                                                                                 |
| ontainer_name: kafka-setup                                                                                        |
| etwork_mode: host                                                                                                 |
| lepends_on:                                                                                                       |
|                                                                                                                   |
|                                                                                                                   |
| <b>command:</b> "bash -c 'echo Waiting for Kafka to be ready && ∖                                                 |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
| add-config cleanup.policy=compact.segment.ms=10000,min.cleanable.dirty.ratio=0.01,min.compaction.lag.ms=1000 && \ |
| kafka-topicscreateif-not-existszookeeper localhost:2181partitions 1replication-factor 1topic STSCommand && \      |
| kafka-configszookeeper localhost:2181entity-type topicsalterentity-name STSCommand \                              |
| add-config cleanup.policy=compact.segment.ms=10000,min.cleanable.dirty.ratio=0.01,min.compaction.lag.ms=1000 && \ |
| kafka-topicscreateif-not-existszookeeper localhost:2181partitions 1replication-factor 1topic STSTalk && \         |
| kafka-configszookeeper localhost:2181entity-type topicsalterentity-name STSTalk \                                 |
| add-config cleanup.policy=compact.segment.ms=10000,min.cleanable.dirty.ratio=0.01,min.compaction.lag.ms=1000 \    |
|                                                                                                                   |
| nvironment:                                                                                                       |
|                                                                                                                   |
|                                                                                                                   |
| KAFKA BROKER ID: ignored                                                                                          |
| KAFKA ZOOKEEPER CONNECT: ignored                                                                                  |

<<p>(日本)

#### How does it work?

- All containers deployed using docker-compose tool (docker-compose.yaml)
- In the first step Apache Kafka topics are created for the communication of alarm server, alarm logging instance and Phoebus (broker ignored)
- Alarm logger and alarm server are waiting for the Apache Kafka service to be ready
  - Apache Zookeeper manages service discovery for Kafka Brokers (in our case only 1 broker)
  - Apache Kafka stores messages and allows consumers to fetch them by topic
- elasticsearch indexes are being created + Kibana is used to visualize them (logging),
- S All the remaining services, databases are starting...
  - scalability
  - partial deployment of services (e.g. Phoebus + IOC + archiver + engine)
  - easily maintainable (fallback options, starting with daemon, restart if closed)

#### How does it work? - video



Marcel Bajdel, Peter Zumbruch

PANDA Collaboration Meeting 2020

#### Multi-container control system



Automatic topologies and intelligent grouping

Marcel Bajdel, Peter Zumbruch

PANDA Collaboration Meeting 2020

イロト イポト イヨト イヨト ヨ

#### Multi-container control system



- Automatic topologies and intelligent grouping
- Contextual details and metrics

#### Multi-container control system



| alarm-server<br>mbajdel/alarm-server cbmdcs02                                                                                     |                                                                                                                                                 |                                                                                 |                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                   |                                                                                                                                                 |                                                                                 |                                                                                                                           |
| Status                                                                                                                            |                                                                                                                                                 |                                                                                 |                                                                                                                           |
| 0.0                                                                                                                               | 37 %                                                                                                                                            | 179 M                                                                           | IB                                                                                                                        |
| c                                                                                                                                 | PU                                                                                                                                              | Memo                                                                            | iry                                                                                                                       |
| Info                                                                                                                              |                                                                                                                                                 |                                                                                 |                                                                                                                           |
| Image ta                                                                                                                          | ag: latest                                                                                                                                      |                                                                                 |                                                                                                                           |
| Comman<br>Stat<br>Uptim<br>Restart                                                                                                | Ind: /bin/sh -c /bin<br>te: Up 9 weeks<br>te: 2 months<br>#: 0<br>Ps: 10.10.0.1, 10.20                                                          | n-server<br>/bash /docker<br>13.20.12, 127.0                                    | -entrypoin                                                                                                                |
| Comman<br>Stat<br>Uptim<br>Restart                                                                                                | id: /bin/sh -c /bin<br>te: Up 9 weeks<br>te: 2 months<br>#: 0<br>₽≤ 10.10.0.1, 10.20                                                            | n-server<br>/bash /docker<br>13.20.12, 127.0                                    | -entrypoin<br>01, 172.17<br>+2 ♥                                                                                          |
| Outbound<br>Uncontained<br>lauda1<br>mpod                                                                                         | e: Intrajdeviain<br>(: /bin/sh <-/bin<br>te: Up 9 weeks<br>re: 2 months<br>st: 0<br>9 c: 10:10:0.1, 10:20                                       | n-server<br>/bash /docker                                                       | -entrypoin<br>0.1, 172.17<br>+2 ¥<br>Port ¥#<br>29094 3<br>5064 1<br>45879 1                                              |
| Outbound<br>Uncontained<br>lauda1<br>Processes                                                                                    | e: Intrajuteviaim<br>(* / bin/sh < / bin<br>te: Up 9 weeks<br>re: 2 months<br>#: 0<br>ac: 10:10:0.1, 10:20                                      | n-server<br>/bash /docker<br>13.20:12, 127:0<br>10 ▼ CPU                        | -entrypoin<br>0.1, 172.17<br>+2 ¥<br>Port ¥<br>29094 3<br>5064 1<br>45879 1<br>J Memory                                   |
| Outbound<br>Uncontained<br>Jauda1<br>Processes<br>java                                                                            | e: Introjutovialm<br>(* /bin/wh < /bin<br>te: Up 9 weeks<br>e: 2 months<br>f: 0<br>Ps: 10.10.0.1, 10.20<br>Ps: 10.10.0.1, 10.20<br>F<br>121     | n-server<br>/bash /docker<br>13.2012, 127.0<br>1D ▼ CPL<br>04 0.00 9            | -entrypoin<br>0.1, 172.17<br>+2 ♥<br>Port ♥ #<br>29094 3<br>5064 1<br>45879 1<br>J Memory<br>5 1718 MB                    |
| Outbound<br>Uncontained<br>laudal<br>Processes<br>lava<br>/bin/sh                                                                 | e: InJugdeviaim<br>(*) /bin/wh < /bin<br>te: Up 9 weeks<br>e: 2 months<br>#: 0<br>P≤ 10.10.0.1, 10.20<br>P≤ 10.10.0.1, 10.20<br>F<br>121<br>121 | -server<br>/bash /docker<br>13.2012, 1270<br>1D ← CPL<br>04 0.00 9<br>02 0.00 9 | -entrypoin<br>0.1, 172.17<br>+2 ♥<br>Port ♥ #<br>29094 3<br>5064 1<br>45879 1<br>J Memory<br>5 1718 MB<br>5 0 B           |
| Command<br>Star<br>Uptim<br>Restart<br>If<br>Outbound<br>Uncontained<br>lauda1<br>mpod<br>Processes<br>iava<br>Abinish<br>Abinish | e: Introduction<br>fc: //bir/wh-c/bin<br>fc: Up 9 weeks<br>ie: 2 months<br>f: 0<br>Par 10.10.0.1, 10.20<br>F<br>121<br>123<br>120<br>120        | 1.0 ← CPL<br>0.4 ← CPL<br>0.4 ← CPL<br>0.4 ← 0.0 %<br>5.6 ← 0.0 %               | -entrypoin<br>0.1, 172.17<br>+2 ♥<br>Port ♥ #<br>29094 3<br>5064 1<br>45879 1<br>J Memory<br>5 1718 MB<br>5 0 B<br>5 8 KB |

A B F A B F

- Automatic topologies and intelligent grouping
- Contextual details and metrics
- Real-time container monitoring

Marcel Bajdel, Peter Zumbruch

고나님

#### Usage of Weavescope - video



## mSTS operation - Phoebus, IOC, Archiver

A prototype version of the DCS for the mSTS has been in use since 2 months without any major issues



Figure: Current drawn by one side of the silicon sensor during for Bi-209 beam

Marcel Bajdel, Peter Zumbruch

PANDA Collaboration Meeting 2020

-

(日)

## mSTS operation

A prototype version of the DCS for the mSTS has been in use since 2 months without any major issues



Figure: Current drawn by one side of the silicon sensor during for Bi-209 beam - spill length seen by silicon sensor

Marcel Bajdel, Peter Zumbruch

PANDA Collaboration Meeting 2020

#### mSTS operation

 $\bigcirc$  Performance of the alarm logging seen by Kibana  $\rightarrow$  huge traffic caused by unstable connection with MPOD. (snmp protocol)



Marcel Bajdel, Peter Zumbruch

PANDA Collaboration Meeting 2020

## mSTS operation

Issue resolved by increasing the maximum time that the driver should wait for the value → temporary solution. For the next campaign CC24 controller with built-in IOC will be used.



Marcel Bajdel, Peter Zumbruch

PANDA Collaboration Meeting 2020

#### Final thoughts

- containers safety concerns LDAP authentication/additional hardening of the system,
- rearrange system architecture inside the experiment networks (CA-gateway),
- In possibility to use caget(), camonitor() from the inside of the system → EPICS on Jupyter Notebook?
- read-out of voltages, temperature from the STS-XYTER (STS,X,Y coordinate, Time and Energy read-out) Application-specific integrated circuit using PyEpics
- simple Grafana(interactive visualization web app) interface for showing key parameters

- Performance evaluation of FBG-based fiber optic humidity and temperature sensors (radiation hardness, performance in the low RH range),
  - evaluation of different archivers Cassandra, Archiver Appliance,
  - try-out Kubernetes/Redhat Openshift,

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回日 のなべ

Performance evaluation of FBG-based fiber optic humidity and temperature sensors (radiation hardness, performance in the low RH range),

2 Further developments of the mSTS's DCS ightarrow beam campaign 2021, 2022,

- Finite State Machine
- Integration of FBG based humidity sensors



Figure: mSTS CAD design for the 2021 mCBM campaign - 11 silicon sensors

- Performance evaluation of FBG-based fiber optic humidity and temperature sensors (radiation hardness at least 12kGy, performance in the low RH[0-5%] range),
  - Further developments of the mSTS's DCS  $\rightarrow$  beam campaign 2021, 2022,
  - Thermal demonstrator:



- 50 dummy silicon sensors 100HV channels,
- 100 FEBs,
- 50 PT100 sensors,
- 300 DS18B20 sensors,
- few fiber wire sensors,
- 7.5kW cooling plant,
- ~2500 PVs (STS ~30000PVs).

Figure: Thermal demonstrator CAD design

## Thank You!

E-mail: mbajdel@gsi.de

CBM Gitlab: https://git.cbm.gsi.de/m.bajdel

Docker: https://hub.docker.com/u/mbajdel



Marcel Bajdel, Peter Zumbruch

PANDA Collaboration Meeting 2020

## Backup - Compressed Barionic Matter Experiment



- charged-particle tracking + momentum measurement
- up to ~ 700 charged particles per heavy-ion collision
- 10<sup>5</sup> 10<sup>7</sup> heavy-ion collisions per second

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

free streaming of hit data to online computing

#### Conditions in the STS

- Radiation exposure over the lifetime of 12kGy in the most exposed area of station 1
- Magnetic field of 1 T
- Target temperature of ≤-10°C
- Volume contrainsts ≤3.5m<sup>3</sup>
- Relative Humidity  $\sim 1\%$



Source: Technical Design Report for the CBM [1]

## Sensors Technology

Characteristics of a perfect humidity sensor for HEP experiment

- Radiation resistant
- Insensitive to magnetic field
- High accuracy, especially in low humidity range [0-5]%
- Small dimensions
- Low mass
- Reliable readings across long distances
- Reduced number of wires for operation

#### Fibre Bragg grating sensors



Figure: Fibre Bragg Grating structure [8]

- Fiber Bragg grating is a periodic perturbation of the refractive index along the fiber length which is formed by exposure of the core to an intense optical interference pattern [9]
- Selective filter which reflects the light signal at a certain wavelength named as Bragg wavelength λ<sub>B</sub> [8]

$$\lambda_B = 2n_{eff}\Lambda\tag{1}$$

 $\Lambda$  - grating pitch,  $\mathit{n_{eff}}$  - effective refractive index