
The Geneva library: Using massively parallel processing to
solve complex optimisation problems

Kilian Schwarz / Matthias Lutz
Rüdiger Berlich / Ariel Garcia / Jan Knedlik

Denis Bertini / Jannis Geuppert

GSI Helmholtzzentrum für Schwerionenforschung GmbH
Gemfony scientific UG (haftungsbeschränkt)

25.09.2020 / GSI Panda Workshop

Kontakt:
k.schwarz@gsi.de

r.berlich@gemfony.eu

mailto:k.schwarz@gsi.de
mailto:r.berlich@gemfony.eu

Table of Contents

• Introduction and functionality
• Using Geneva
• Geneva application in Hadron theory
• GSI contributions and benchmarking
• Lessons Learned
• Conclusion and outlook

The Geneva Library Collection

• Generic C++ framework for the search for optimized
solutions of technical and scientific problems

• Covering Evolutionary Algorithms, Swarm Algorithms,
Simulated Annealing, Parameter Scans and Gradient
Descents

• Data structures allow direct interaction between
different optimization algorithms with just one
problem description

• Inter-parameter constraints (x+y < 1) possible
• Support for many-core systems as well as parallel and

distributed environments
• Available under the Apache License v2 (get it from

https://github.com/gemfony/geneva)

Some History

• Started as a means of training neural networks
1994 (Ruhr-Universität Bochum, EP1, Crystal Barrel)

• Extended to optimize particle physics analysis
(Ruhr-Universität Bochum, EP1, BaBar)

• Rewrite at Karlsruhe Institute of Technology and
subject of a Spin-Off

• Usage at GSI and in Industry
• Geneva (and its predecessors) have grown over

time, from some 1000 LOC to over 130000 LOC
• The approach has proven to be highly useful, and

we would appreciate your help in further
development Source: Gemfony

Why here?

• Standard EA arguably not suitable for large scale ML
– Lacks „partial training“
– But has the necessary infrastructure to deal with optimization cycles,

stop-criteria, distribution of work loads, ...
– May cascade algorithms
– ML might be implementable as a „YAO“ (yet another optimization

algorithm)
• Could be extended to perform Neuro-Evolution ?

– „Started life as a means of training FF neural networks“ (still available
as an example)

– Was used from the very beginning to also train the architecture of
feedforward networks

– Geneva combines floating point, boolean and integer parameters
• All ideas are welcome!

Source: Wikipedia
CC0, MartinThoma

Our Vision

• To create a common Open Source optimization
framework, constantly developed and extended by
physicists, computer scientists and engineers
according to professional standards, covering the most
recent algorithms for massively parallel optimization
studies in research and industry

• To concentrate, activate and leverage fragmented
knowledge in the field of parametric optimization to
enable each other solving even the most daunting
optimization problems

• To identify new deployment scenarios, e.g. in ML,
modelling and simulations, ...

Dealing with high-dimensional parameter spaces

• Parameter scan / DOE only possible for low dimensions
of the parameter space
– Parameter scan with n evaluations per parameter in

m dimensions: Need nm evaluations
– For 10 parameters and 10 evaluations each at 30

seconds: would require 9500 years CPU time ...
• Thus: need dedicated optimization algorithms that avoid

visiting all of the parameter space
• As optimization algorithms will typically call the solver

hundreds or thousands of times, such optimization
problems will greatly benefit from parallelization

Source: Gemfony

Dealing with Complex Quality Surfaces – Example: Evolutionary Algorithms

View in –z direction

Parent-individual (red)
and children

Source: Gemfony

Solving high-dimensional problems with EA

Source: https://de.w
ikipedia.org/w

iki/Geneva_(Softw
are)

Source: Gemfony 3000 FP Parameters, constrained to [0,1]

Asymptotic convergence:
Quick initial successes, followed by slower improvements
3000 parameters marks the limit of usefulness of this EA

Parallelization: Comparatively Easy for Multi-Core Environments

● Even large systems may be saturated by suitable work-loads (long evaluation)
● Example uses Evolutionary Strategies, as implemented in Geneva
● For large populations, resembles an “embarrassingly parallel“ problem

Source: Gemfony

Parallelization: More Complex in Distributed Environments

E.g. Thread / G
PG

PUThis will generally be
An optimization algorithm

Source: Gemfony

Calculating the timeout in Grid-/Cloud-
Environments is complex

Table of Contents

• Introduction and functionality
• Using Geneva
• Geneva application in Hadron theory
• GSI contributions and benchmarking
• Lessons Learned
• Conclusion and outlook

Manual see
https://www.gemfony.eu/fileadmin/documentation/geneva-
manual.pdf

l Defining a first optimisation problem
l In an n-dimensional paraboloid, the „quality“ of the

parameter set (n floating point numbers in this case)
is defined as follows:

Class definition of a 2 dimensional
parabola
l The following class lets us search for the minimum of a

two-dimensional parabola
l It is derived from GParameterSet, the base class of all

individuals

Class
GParaboloidIndividual2D

Compare examples in the
Geneva distribution (see
Github link at the end)

The constructor – adding
parameters

The fitness calculation

The main function

Using JSON for the configuration
Here: GEvolutionaryAlgorithm.json

With auto-generated- and user-definable-
command line options

First output

In the Client Server mode many clients/individuals
can run in parallel and contribute to solving a
complex problem

Table of Contents

• Introduction and functionality
• Using Geneva
• Geneva application in Hadron theory
• GSI contributions and benchmarking
• Lessons Learned
• Conclusion and outlook

Hadronic reaction amplitudes for FAIR

• A framework for predicting and analysing final-state interactions for the FAIR experiments is beeing
developed

• This requires massive parallel computing, up to 50 and more coupled-channels needed
• Reaction amplitudes are derived from effective Lagrangians where coupled-channel unitarity and

the implications of micro-causality (dispersion relations) are implemented (isobar models are not
good enough)

• Parameter space is reduced significantly by using constraints from chiral and heavy-quark symmetry
but also large-Nc QCD

• A subset of the parameters can be derived from the quark-mass dependence of existing QCD
lattice data and/or fits to existing data

• Conventional fitting routines like Minuit are not suitable for such problems – gradients are
expensive and not stable

• In order to avoid local minima and to be able to find the best possible solution an Evolutionary
Algorithm with reasonably high population is under investigation

Projects done with Geneva

Constraints from a large-Nc analysis on meson-baryon interactions at chiral order Q3
Y. Heo, C. Kobdaj, M.F.M. Lutz
Published in: Phys. Rev. D 100 (2019) 9, 094035

On a first order transition in QCD with up, down, and strange quarks
Xiao-Yu Guo, Y. Heo, M.F.M. Lutz
Published in: Eur. Phys. J. C 80 (2020) 3, 260

A generalised Higgs potential with two degenerate minima for a dark QCD matter scenario
M.F.M. Lutz, Y. Heo, Xiao-Yu Guo
Published in: Eur. Phys. J. C 80 (2020) 4, 322

From Hadrons at Unphysical Quark Masses to Coupled-Channel Reaction Dynamics in the
Laboratory
M.F.M. Lutz, Xiao-Yu Guo, Y. Heo
Published in: JPS Conf. Proc. 26 (2019) 022022

Low-energy constants from charmed baryons on QCD lattices
Y. Heo, Xiao-Yu Guo, M.F.M. Lutz
Published in: Phys. Rev. D 101 (2020) 5, 054506

Geneva Cluster @ GSI
example case: 10 minutes compute time for one solution, 10 x 400 clients,
10 x 4000 population, 1000 iterations, one week of compute time in total

server machines
with Geneva
servers

1

2

3

10

Slurm

GSI Batch farm – 16000 cores

400 Geneva clients computing 4000
individuals

400 Geneva clients computing 4000
individuals

400 Geneva clients computing 4000
individuals

400 Geneva clients computing 4000
individuals

Table of Contents

• Introduction and functionality
• Using Geneva
• Geneva application in Hadron theory
• GSI contributions and benchmarking
• Lessons Learned
• Conclusion and outlook

Improvements done with GSI

• Geneva client-server communication
– transition from Boost.ASIO-Sockets to Beast Websockets
– heatbeat option allows better client control
– less load on server, higher number of clients, higher

efficiency
• Checkpoints

– iterations are stored in checkpoints (text, xml or binary)
– iterations can be continued later by loading the checkpoint

file

Benchmarks CPU Efficiency vs. nClients

– ongoing developments based on Geneva benchmark suite
– adjusted to Geneva GSI version (May 2019)

• based on Boost v1.72
– added values

• Beast WebSocket Consumer/Client added
• Container classes (Simple, Random) with specific work load (in function process())
• useful to test changes in the Geneva code base

– automatic script for starting a job in the Cluster

ASIO CPU Efficiency and number of clients

BEAST CPU Efficiency and number of clients

Improvements through GSI

• New: Implementation of a parallel Nelder-Mead-
Simplex algorithm

• Based on the geometrical form of the Simplex
• Planned to be included in Geneva

Improvements through GSI

Nelder-Mead-Simplex Algorithm

Improvements through GSI

Nelder-Mead-Simplex Algorithm
via the following types of action the geometry of the Simplex is moving through the
geometry towards the optimum

1) reflection 2) expansion

Improvements through GSI

Nelder-Mead-Simplex Algorithm

3) contraction
(inwards or
outwards)

4) shrinking

Improvements through GSI

Nelder-Mead-Simplex Algorithm

- the parallel simplex algorithm is improving n corners per iteration
- implemented via distributed memory and MPI

Table of Contents

• Introduction and functionality
• Using Geneva
• Geneva application in Hadron theory
• GSI contributions and benchmarking
• Lessons Learned
• Conclusion and outlook

Lessons learned

Geneva has proven to be highly useful in many contexts.

But keep in mind the rough corners

C++ as an implementation language for distributed systems

• Note: we are not talking about „embarassingly parallel“ here ...
• C++ wants to be the ideal language

– The “academically perfect“ language
– High-speed, close to the bare metal
– All possibilities reserved (but easy to shoot yourself in the foot)
– „Design by committees“ (plural ...)

• Minimal focus on standard libraries, infrastructure, surrounding
– No networking in the standard after 40 years ?!??
– Many missing multithreading constructs (think „threadpool“)

• Language would have long been dead, except
– There is a large pool of high quality libraries out there (think „Boost“)
– Highly knowledgable community
– If you do have the tools and the knowledge, using C++ can be a joy! J

• C++ is hence still in wide use throughout science and industry

C++ as an implementation language for distributed systems

• Lack of networking constructs has meant for Geneva: build your own
– Initially based on MPI, then Boost.ASIO, then Boost.Beast (Websockets)

• Majority of work went into this
– This was NOT the intention!
– Not the core business of Geneva (but arguably what makes it useful)
– Many hard to track bugs, and difficult to find suitable test environments (We are paying > 1000 Euros per

year for root servers)
• A useful structure has evolved from modularizing code

– A random number factory, transparent to the user.
• Produce centrally when the system is idle or no unused numbers are left in the store.
• Consume in many parallel entities

– Brokerage
– Test-infrastructure (in-class definition, decentral execution)

• Still: could be done (much) better
– But lets not try to do the same mistake C++ did ...
– The focus in the future should be much more on optimization algorithms

Licensing

• Make it open
• Make it open
• Make it open
• And use a non-copyleft Open Source license

If I were to do it again ...

• Keep it simple
– No over-engineering
– There is a threshold where development efficiency goes down
– Need modularized code, where each module is easily maintainable by 2 people

• If you want contributions, make it as open as possible.
– Either it is Open Source or it is not
– Encourage contributions

• Use seperate languages for specific tasks
– Do NOT try to make it a monolithic system
– Implies decoupled duties and tasks
– Idea: MQTT broker, allow algorithms to be developed in any language

• Concentrate on the core tasks, do not try to improve languages
• Test first, then develop
• Refactoring

– Reuse your own, good ideas (but re-arrange and re-write them)

This can not be done alone ...

Table of Contents

• Introduction and functionality
• Using Geneva
• Geneva application in Hadron theory
• GSI contributions and benchmarking
• Lessons Learned
• Conclusion and outlook

Conclusion

• Geneva is an efficient client/server tool for doing distributed optimisation within
an HPC environment
– mainly using Evolutionary Algorithm
– using up to 400 clients with population up to 4000

• May need refactoring and needs a larger community
– Needs ideas both for optimization and for the clustering part

• Future work
– adding more reliable optimisation algorithms
– increasing scalability
– starting inter-site optimisation on Grids/Clouds
– Geneva Spack package and Geneva Singularity Container for easy use
– Simplify Geneva interface even more for common usage patterns

• We are highly interested in pointers and contributions regarding the extension of
Geneva towards ML

Thank you

Do contact us in case of questions:
k.schwarz@gsi.de

r.berlich@gemfony.eu

If you want to try Geneva:
https://github.com/gemfony/geneva

mailto:k.schwarz@gsi.de
mailto:r.berlich@gemfony.eu
https://github.com/gemfony/geneva

Masthead Gemfony

Address Gemfony scientific UG (haftungsbeschränkt)
Hauptstraße 2
76344 Eggenstein-Leopoldshafen - Germany

Telefone +49(0)7247/934278-0

Fax +49 (0)7247 934 2781

Email contact@gemfony.eu

Registered at Amtsgericht Mannheim (Germany)
Registration-Id HRB 710566

Ust.-Id DE274421406

Managing Director Dr. Rüdiger Berlich

mailto:contact@gemfony.eu

Material used

Slide Figure Source

The Geneva library collection Car in puzzle Image courtesy of Simon Howden at FreeDigitalPhotos.net

The Geneva library collection Wind turbines in puzzle http://www.flickr.com/photos/pebondestad/3533177131/sizes/l/in/photostream/C
reative Commons Attribution 2.0; By Pål Espen Bondestad.

The Geneva library collection Particle decay https://en.wikipedia.org/wiki/File:CMS_Higgs-event.jpg ; Creative Commons Attribution Share-Alike 3.0;
By CERN

Other slides Other pictures Gemfony scientific + GSI, or marked on the page

http://www.flickr.com/photos/pebondestad/3533177131/sizes/l/in/photostream/
https://en.wikipedia.org/wiki/File:CMS_Higgs-event.jpg

