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e Practical Example
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o Implementation (Q/A)
m Toy model and code snippet
— https:/irepl.it/@cfanelli2/driver#main.py
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e Applications
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I Detector Design: Intro

Particle detectors are essential tools to understand the universe and they play a crucial function in our
society, from medical imaging to drug development, from dating ancient findings to testing materials
properties.

Fundamental nuclear and particle physics research often requires realizing expensive large-scale
experiments combining multiple sub-detectors to investigate the building blocks of nature. According to
the DOE, “Al techniques that can optimize the design of complex, large-scale experiments have the
potential to revolutionize the way experimental nuclear and particle physics is currently done”.

Surprisingly at present few Al-based approaches (and generally procedural methods) for designing
particle detectors have been explored/developed.

More than 50 years have passed since Charpak (nobel prize in 1992) revolutionised particle detectors
with the construction of a MWPC. Nowadays we have the unique opportunity to design complex detection
systems with the support of Al.

The Electron lon Collider will be a flagship nuclear physics facility in the US that will be constructed over
the next 10 years and it is currently at its design phase. Its R&D program can be one of the first to
systematically leverage on Al.
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Will be constructed over ten years at an estimated
cost between $1.6 and $2.6 billion
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I EIC scientific program in a nutshell

Emergence of Mass Nucleon Spin and Physics with Other Topics
Imaging high-energy nuclear .
o Nucleons: 99% of the mass of beams e Confinement, Hadronization
the visible universe e Full map of nucleon spin e Passage of color charge
structure and dynamics in e Saturation: Is the Shrto:gh ?OI‘j' QCD/ rrAatter
e How does the proton mass momentum and position high-energy/low-x limit ° czllisigrics &
emerge from QCD, and why is space governed by a universal o Y
it so heavy? dense saturated gluon 5 EE
e Towards a comprehensive 5D matter?
e What is the mechanical picture of the quantum
structure of the proton? structure of the proton

i.A. etal- BNL-98815-2012- JAJLAB-PHY-12-1652arXiv:1212.1701
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effect of gluon cloud
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https://arxiv.org/abs/0712.0633
http://cds.cern.ch/search?f=author&p=Accardi%2C%20A.&ln=en

I Towards a "Handbook Detector” for EIC

At the beginning of the 2020 we had different concepts... e After CD-0, the project rapidly evolved
as the EIC community is working on

| BNL: EIC-sPHENIXE the EIC Yellow Book to have a general

-

purpose "Reference Detector” for BNL.

e See recent talks by and
at the 3rd Yellow Report
workshop at CUA

“Realistic” detector space allocations (but no support structures, etc.)
[Ghetonkon) [ Cryesat | [-Emcai MACCEIIN IEORIGH Freshoer (5 Tracker TRAGKER] [TAD ] 16 hallidoorway: holgt
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This area can be re-shaped for a DIRC? IP6 hall center What about l‘he continuous

e/m calorimetry coverage?
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https://indico.bnl.gov/event/9080/contributions/40917/
https://indico.bnl.gov/event/9080/contributions/40919/
https://indico.bnl.gov/event/9080/contributions/40919/

I Dual RICH: case study e el

E. Cisbani, A. Del Dotto, CF*, M. Williams et al. *+gas (1.6 m, n(CZFB): 1.0008)

"Al-optimized detector design for the future Electron-lon Collider: the dual-radiator RICH case." PhotoSensor
Journal of Instrumentation 15.05 (2020): P05009. T

. K
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mRICH DIRC dRICH g dRICH STOF(20ps)  dE/dx

aerogel gas sTOF(10ps) e

Sector Side View
e  Continuous momentum coverage. /|
e Simple geometry and optics, cost effective. ‘ | Gasvolume
e Legacy design from INFN, see EICUG2017

e 6 Identical open sectors (petals)
e  Optical sensor elements:

8500 cm?/sector, 3 mm pixel
e Large focusing mirror

1

"\ PhotoSensor

—_ Aerogel + Filter !
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https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf

IConstruction Constraints on Design Parameters

The idea is that we have a bunch of parameters to optimize that characterize the detector design.
We know from previous studies their ranges and the construction tolerances.

parameter description range [units] tolerance [units]
[ R 7 mirror radius | [290,300] [cm] " 100 [um]
pos r radial position of mirror center [125,140] [cm] 100 [pm]
pos 1 longitudinal position of mirror center | [-305,-295] [cm] 100 [pm]
tiles x shift along x of tiles center [-5,5] [cm] 100 [um]

tiles y shift along y of tiles center [-5,5] [cm] 100 [pm]
tiles z shift along z of tiles center [-105,-95] [cm] 100 [pm]
Naerogel aerogel refractive index [1.015,1.030] 0.2%
tacrogel aerogel thickness [3.0,6.0] [cm] 1 [mm]

Ranges depend mainly on mechanical constraints and optics requirements.
These requirements can change in the next future based on inputs from prototyping.
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Choice of Figure of Merit

Goal is improve the distinguishing power of pions/kaons,
Main contributions to resolution

hence:
aerogel
i / === Chromatic === Magnetic === Chromatic === Magnetic
| |<9K> <97l'>| l ny Emission « == Track Emission «= = Track
No = 1 : = Pixel : Pixel
P-€.
Oy

Ny, = (NJ + NJ5)/2

polar angle [deg] polar angle [deg]

1 T

—_— + S
(No)li ~ (No)l2 3

Remember that we do not have an explicit form of the FOM we
are trying to optimize as a function of the design parameters

h=2-

@ p, = 14 GeVic (aerogel) and p, =60 GeV/c (gas) considering the two parts disentangled
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I Noi

se Studies

No

_ 1K6x) = <)llv/

1p.e.
o

Dedicated studies to characterize the
noise as this is an optimization of a
noisy function

We choose N tracks = 400 based on
the studies on noise to minimize as
much as possible computing time
during simulation.

500 1000 1500 2000 25000

Number of tracks

+ Aerogel

* Gas

500 1000 1500 2000 2500
Number of tracks

500 1000 1500 2000 25000
Number of tracks

500 1000 1500 2000 2500
Number of Tracks
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I Bayesian Optimization

e Objective fis a black-box function and can be noisy.

e FEvaluations are expensive making grid or exhaustive
search impractical.

e flacks of special structure (e.g. convex), and it has no
gradient information.

If you don’t have the above constraints,
do not use Bayesian Optimization

e \We want to determine the optimum of 7, no need to improve estimates of regions where fis not
optimal. The idea is to build a surrogate function:

o  With a Prior over the space of objective functions, to model our black-box function.
o Likelihood ~ probability of observing the data given the function .

o The Posterior probability is the surrogate objective function. It captures the updated

beliefS abOUt the unknown ObjeCtive- https://machinelearningmastery.com/what-is-bayesian-optimization/

http://krasserm.qgithub.io/2018/03/21/bayesian-optimization/
http://krasserm.qgithub.io/2018/03/19/gaussian-processes/
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https://machinelearningmastery.com/what-is-bayesian-optimization/
http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/

I Bayesian Optimization
t(n) t(n+1)
e BO is a sequential strategy
developed for global
optimization.

Posterior
Posterior

e After gathering evaluations

. . c ;S

we builds a posterior § §

distribution used to g E

construct an acquisition = 3

function. g &

e This cheap function 1. Select a Sample by Optimizing the Acquisition Function.
det . hat i t 2. Evaluate the Sample With the Objective Function.
etermines what Is nex 3. Update the Data and, in turn, the Surrogate Function.

query point. 4.GoTo 1.

http://krasserm.qgithub.io/2018/03/21/bayesian-optimization/
http://krasserm.qgithub.io/2018/03/19/gaussian-processes/
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http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/

Acquisition Functions

Iteration: 0 (no noise)
£=0.01
Predicted (u)
Ground Truth (f)
uxto
Training Points
Query Point

Acquisition function
Maxima

Exploitation Exploration

(ui(z) — f(z7) — €)8(2) + 04(2)$(2), ifox(z) >0
N =0

Best found so far

We are sampling x

Exploitation: search where p is high
e Exploration: search where o is high
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Iteration: 1
£=0.01

Predicted (u)
Ground Truth (f)
uxto

Training Points
Query Point

Acquisition function
Maxima

Iteration: 2
£=0.01

Predicted (u)
Ground Truth (f)
uxto

Training Points
Query Point

Acquisition function
Maxima

Iteration: 3
£=0.01

+

Predicted (u)
Ground Truth (f)
uHxtOo

Training Points
Query Point

Acquisition function
Maxima




IAcquisition Functions

Many acquisition functions, e.g.,

Probability of Improvement, Expected

Improvement, Upper (Lower)
confidence bound, etc

In most cases, acquisition functions
provide knobs for controlling the
exploration-exploitation tradeoff

When optimization is more complex
(more dimensions), then a random
acquisition might perform poorly

QRandom

+— Random

= Predicted (u)
= Ground Truth (f)
uxo
® Training Points
@® QueryPoint

Acquisition function
+ Maxima

Comparison of different Acquisition Functions on Gold Mining task

- s G  n n n

uc =

— Pl
< E

Thompson

“- GP-UCB i —71 - ) I RS

N calls °
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http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.306.6052&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.306.6052&rep=rep1&type=pdf
https://distill.pub/2020/bayesian-optimization/
https://distill.pub/2019/visual-exploration-gaussian-processes/

Question(s)?
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The Model and
the Optimized FoM
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IdRICH Performance @ the optimal design point

aerogel (optimal) |

gas (optimal)
aerogel (legacy)
+gas (legacy)

c
O
4
(©
| -
©
Q
Q
0
AV
S~
=

momentum [GeV/c]

Statistically significant
Improvement in both parts.

In particular in the gas region
where the 50 threshold shifted
from 43 to 50 GeV/c and the 30
one extended up to

Notice that before this study we
did not know “how well” the
legacy design was performing.

E. Cisbani, A. Del Dotto, CF*, M. Williams et al.
JINST 15.05 (2020): P05009.

Online Joint GlueX-EIC-Panda Machine Learning Workshop



parl

I Convergence Criteria =

pard

par5

par6

=y par7

/ par8
A/

) OgOo0a0,0,0,0,0,0, 0]

e \We defined a set of conditions to ensure convergence.

0
)]
—
-]
=
©
)]
Y—

e These correspond to the logic AND of booleans on
each feature and on the variation of the figure of merit.

e They are built on standardized Z and Fisher statistics.

o
'S

i
N

e Pre-processing of data required to remove outliers.

o
o

distance 4th and 1st best points [a.u.]
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Tolerance Regions

e BO provides a model of how the FoM depends on the parameters, hence it is possible to use the posterior
regions ensuring improved PID, see previous slide).

to define a tolerance on the parameters (

Hap(X)

128

132 134

;osAr» [cm]

Hep(x)

Eiles y [cmi

e Larger than the construction tolerances on each parameter.
Notice a small lateral shift of the tiles has negligible impact on the PID capability.

= Mgp(x)

Eiles X [em]

Hgp(X)

tj(éer.l): [cr;i]
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I Comparison with Random Search

Each call:
400 tracks generated/core
20 cores

1 design point ~ 10 mins/CPU

Budget: 100 calls

random search random search

—e— bayesian optimization (GP) —e— bayesian optimization (GP)

500 1000 1500 2000 20 40 60 80 100
number of observations number of calls

0
)
—
o
o

o

~N

=

F=]
2

»
]
E

=

e BO with GP scales cubically with number of observations.

e Bayesian optimization methods are more promising because they offer principled approaches to weighting the
importance of each dimension.

e For this 8D problem - even with 50 cores, RS looks unfeasible due to the curse of dimensionality.
o Recall that the probability of finding the target with RS is 1-(1-v/V)", where T is trials, v/V is the volume of

target relative to the unit hypercube
Bergstra, Bengio, “Random search for hyper-parameter optimization”, J. Mach. Learn. Res.13 (Feb) (2012) 281-305.
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\/ no

BO WRAPPER

control convergence

ANALYSER
(reconstruction)

updated model

SIMULATION

(physics+detector)

settings x

........ Ncores

settings x

N detectors

settings x
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I Frameworks and Deployment in the Industry

scikit-optimize

sigopt
hyperopt

spearmint
MOE

BOTorch
GPFlowOpt

GPyOpt
DragonFly

Hyperband
Smac

etc

Bayesian Optimization has been applied to
selection for predictive accuracy.

Uber uses Bayesian Optimization for

Facebook uses Bayesian Optimization for A/B testing.

Netflix and Yelp use Metrics Optimization software like
Metrics Optimization Engine (MOE) which take

advantage of Parallel Bayesian Optimization.
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https://scikit-optimize.github.io/stable/
https://app.sigopt.com/docs/overview/python
http://hyperopt.github.io/hyperopt/
https://github.com/HIPS/Spearmint
https://github.com/Yelp/MOE
https://botorch.org/tutorials/
https://github.com/SheffieldML/GPyOpt
https://github.com/dragonfly/dragonfly
https://automl.github.io/HpBandSter/build/html/optimizers/bohb.html
https://github.com/automl/SMAC3
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.353.193&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.353.193&rep=rep1&type=pdf
https://www.youtube.com/watch?v=c4KKvyWW_Xk
https://www.youtube.com/watch?v=c4KKvyWW_Xk
https://engineeringblog.yelp.com/2014/10/using-moe-the-metric-optimization-engine-to-optimize-an-ab-testing-experiment-framework.html
http://github.com/Yelp/MOE
http://github.com/Yelp/MOE

I DeteCtor Toy Model https://repl.it/@cfanelli2/driver#main.py

ort detector

rand_st = np.
rand_st = 131

Packager files 13 R=1.
pitch =

ncalls = 1¢

(".....INITIAL (
tr = detector.Tracke yl, y2, y3, 21, 22,
Z, Y = tr.

JINITIAL GEOMETRY

detector.geonetry a R, y_min=-10, y_max=10,block:

N_tracks =
b_max=100, alpha_mean=0, alpha_std=@

Convergence plot

—e— BO: GP
—e— BO: GBRT

detector. ) R, y_min=-10, y_max=10,block=False, pause=-1) Landonm seatch

detector.tr wy(tracks, Z,block=False,pause=5)

score = detector. ) Y, tracks, R)

,score)

20 30
Number of calls n



https://docs.google.com/file/d/134mUAVd-wZxJBgu9Vy9sZBOxGNI9BOaP/preview

Question(s)?
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| Gluex DIRC Alignment o

start
counter

electron
beam

c
8
©
®
Q
o)
]
-
B

forward calorimeter
barrel  time-of
calorimeter -flight

forward drift
chambers

central drift
chamber

superconducting
magnet

/K separation with DIRC

spponin bracket

Time [ns]

Fused silica bars

Optical box

3D (x,y,t) readout allows to separate spatial overlaps.

Patterns take up significant fractions of the PMT in x,y and are read out over
50-100 ns due to propagation time in bars.

H12700 PMTs have a time resolution of O(200 ps) and read-out electronics
giving time information in 1 ns buckets.
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ApproaCh CF with DIRC group @ MIT

L e Select high purity sample of particles at low P _ o
Main alignment (well identified by GlueX PID w/o DIRC) Lk ,
parameters e Model the PDF as a function of the offsets | .
e Take observed hits to build Likelihood '
e Optimize FOM = logL

(normalized to a default alignment)
e Test DIRC PID on larger momentum P

True: Bayesian Optimization No Correction

3-seg mirror:
0x,0y,0z=(0.25,0.50,0.15) deg,
y = 0.50 mm;

bar: z=2.00 mm;

PMT: (r,0)=(1.50 mm,1.00 deg)

Eff. Reso: 1.572 mrad Eff. Reso: 1.599 mrad s Eff. Reso: 2.041 mrad
- Reso pery: 8.265 mrad - Reso pery: 8.411 mrad - Reso pery: 10.725 mrad
os- AUC: 99.85% *~ AUC: 99.83% s— AUC: 98.9%

Pion Rejection

BO-reversed engineered:
3-seg mirror:

0x,0y,0z=(0.25, 0.58, 0.12) deg,
y =0.59 mm;

bar: z=2.08 mm;

PMT: (r,8)=(1.87 mm, 1.35 deg) ‘ ' ‘ " ‘ ‘ ' ‘ " ‘ ' ‘ ' " ‘

Kaon Efficiency Kaon Efficiency Kaon Efficiency
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Hyperparameters tuning: DeepRICH

DeepR/C/—/ Hyperparameters

injected Table 2. List of hyperparameters tuned by the BO. The tuned values are shown in the outermost right column. The optimized test score
is about 92%.

injected 1 € R™* symbol description range

reconstructed Tr : FENE NLL A [10~",10%] 0.784

e b ' | CE X [1071,10] 1.403
MMD A (1,10°] 1.009
LATENT_DIM latent variables dimension [10,200] 16
var_MMD o inN(0,0) [0.01,2] 0.646
Learning Rate learning rate [0.0001, 1] 6.6-107*

optimal value

'

e DeepRICH Performance

X "

/’“'n/ . Encoder Table 3. The area under curve (%), the signal efficiency to detect pions £5 and the background rejection of kaons £ corresponding to
the point of the ROC that maximizes the product he corresponding momenta at which these values have been calculated are
also reported. This table is obtained by integrating over all the other kinematic parameters (i.c. a total of ~6k points with different
6,6,X, Y for cach momentum).

DeepRICH FastDIRC
¥ Kinematics o} s £ JC &
CNN/MLP 4GeV/c

i 4.5 GeV/c
Classifier
5GeVic

L}
Classification
Output

latent space
t-SNE used for 3D visualization

10" 1o 107 e
reconstructed Batch size
Figure 9. After training, the inference time is almost constant as a function of the batch size, meaning that the effective inference
time—i.e., the reconstruction time per particle—can be lower than a s, the architecture being able to handle 10¢ particles in
; : o p . about 1.4 ms in the inference phase. Notice that the corresponding memory size in the inference phase is approximately equal to
CF and J. Pomponi. Machine Learning: Science and Technology 1.1 (2020): 01 . e value reportea IH B,
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. . . . . . V. Berdnikov, E. Cisbani, J. Crafts, CF,
Towards Multi-objective Optimization &<
e Ongoing EIC project: aerogel endowed with planes of fibers for mechanical stability.

e BO-assisted preliminary design will be extended to a multi-objective (resolution, mechanical
strength, cost) design optimization problem with constraints.

e Several approaches on the market, genetic algorithms, bayesian, reinforcement learning .

Detector Part Parameter e
T —
aerogel thickness
aerogel width
9 Pareto front
aerogel refraction index g
£
fiber diameter g SSSRSSEE
() e -
fiber pitch o —
fiber gap |
e L I 7 : sensor plane distance meChaniCa/ e
P ‘o= | ‘ Str
LT | e » ) ength
?.?33712;‘3?;'217.7‘1). dir (0.73, -0.12, -0.67), up (0.11, 0.99, -o,os)‘ "\\ sensor plQne size
time + 215 = 1586872849 <] Vi gl §
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I “Taking the Human out of the Loop”..

B. Shahriari, et al. Proceedings of the IEEE 104.1 (2015): 148-175.

Optimal Design
Inverse Design
Self-Design
Calibration/
Alignment
Self-Calibration
etc.

Bayesian
Optimization

DL-enhanced

Multi-objective

Evolutionary autoML Meta-learning . . .
All discussed previously with BO

Reinforcement Le%\rnm% «fElie
ccelérated regards mostly “offline
Discovery applications and expensive

functions to evaluate...
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I Looking at the future: near real time optimizations

e The EIC will be built in ten years from now, and this allows to look at new
emerging technologies.

e New innovative approaches like Streaming Readout will further the
convergence of online and offline analysis leading to better data quality control
during data taking and near real time calibrations.

e The EIC “Software” will likely include Al and Quantum Computing (and
perhaps a combination of the two).

e QC in particular can revolutionize the way we deal with optimization problems.

— ) /T
4
5 generation 5000-qubit syst

em wi
be made available between 202 21 % 2 2018 2016 2018 2020
Years
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1 - TraQCki d Fast Ali t,
AI Ig n m e nt Wlth QC +AI CF*, E. Cisbani, A. De:aDottoI,n\?VélgheIS:, A.I%nuri?gga

Detector: tracker system with 4 planes of GEM chambers; each plane has spatial and angular offsets

A sample of 10* cosmic events (straight tracks)
is utilized for calibration

N N
y - — - o v
B yeny X ) = E h x, + E o, XX,
5 =l

Dataset Dataset Dataset Dataset i<J=l
Plane 1 Plane 2 Plane 3 Plane 4

cil c21 c31 c4l

Dataset Dataset Dataset Dataset

Plane 1 with |\ /| Plane2with \~ [ Plane3with )/ Plane4 with

Calibration 1 |\ /|| Calibration || Calibration 1 Calibration 1
\ /

ci2 c22 c32 c42

Dataset \ Dataset I Dataset / Dataset H |gh||g hted the minimum
Plane 1 with /| Plane 2 wi \ | | Plane 3with |\ Plane 4 with
Calibration2 |\ /\ /| Calibration 2 /| Calibration2 |\ Calibration 2

energy state of the
Hamiltonian

ciN /[ \ c2N c3N c4N

Dataset ¢/ \ Dataset Dataset Dataset
Plane 1 with Plane 2 with Plane 3 with Plane 4 with
Calibration N Calibration N Calibration N Calibration N

e Hopfield Networks with calibrations as units.

e With the current limits on available qubits we can process (study as a “whole”) ~ thousand of
different sets of calibration constants simultaneously...

e |deally more qubits = more configurations explored.
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“Civilization advances by extending the number of

I : ; u l I I I I la ry important operations which we can perform without

thinking of them” (Alfred North Whitehead)
e Supported by unprecedented computing resources and novel learning algorithms we can
“optimize” detectors in a more efficient way ever done in past experiments.
e This can be extended to a system of subdetectors as in large scale experiment like EIC.

e Detector design assisted by Al is a very hot area of research and is just at its onset. It is
possible that in the near future we will construct detectors entirely designed by Al.

e In the next decade we will likely use “Intelligent Detectors” able to self optimize
calibration/alignment parameters on real time.

e Al/QIS will revolutionize the way experimental nuclear and particle physics is currently done.
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Questions?
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